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A B S T R A C T

Molecular biological findings indicate that affective disorders are associated with processes akin to accelerated
aging of the brain. The use of the BrainAGE (brain age estimation gap) framework allows machine-learning
based detection of a gap between age estimated from high-resolution MRI scans an chronological age, and thus
an indicator of systems-level accelerated aging. We analysed 3T high-resolution structural MRI scans in 38 major
depression patients (without co-morbid axis I or II disorders) and 40 healthy controls using the BrainAGE
method to test the hypothesis of accelerated aging in (non-psychotic) major depression. We found no significant
difference (or trend) for elevated BrainAGE in this pilot sample. Unlike previous findings in schizophrenia (and
partially bipolar disorder), unipolar depression per se does not seem to be associated with accelerated aging
patterns across the brain. However, given the limitations of the sample, further study is needed to test for effects
in subgroups with comorbidities, as well as longitudinal designs.

1. Introduction

Accelerated biological aging has been hypothesized in several psy-
chiatric disorders, such as affective, psychotic, and trauma-related
disorders (Darrow et al., 2016; Wolkowitz, 2018). This also includes
major depression, for which several recent lines of evidence suggest an
accelerated course of cellular and cerebral aging. On a molecular level,
the interaction of cellular stress, neuro-plasticity and age-dependent
changes has been of particular interest (Sibille, 2013). Several studies
have reported an association between depression a leukocyte site tel-
omere length, with can be extracted from peripheral blood samples
(Schutte and Malouff, 2015). Telomere length might be related to
various environmental risk factors such as early life stress, which act
across diagnosis but again might be particularly relevant in depression
(Darrow et al., 2016; Price et al., 2013; Verhoeven et al., 2014).

On a network or neural-systems level (i.e. macroscopic level of brain
regions and/or the whole brain), there is now also evidence linking
aging to depression as well as other psychiatric conditions
(Koutsouleris et al., 2014). Analysis of brain structural variation has
demonstrated an anatomical overlap of regions displaying changes
across healthy aging as well as vulnerability to psychotic and neuro-

degenerative disorders (Douaud et al., 2014). In major depression, two
areas in particular have been implicated in accelerated aging. In a co-
hort of elderly adults Elbejjani et al. demonstrated, that depressive
symptoms are associated with larger hippocampal grey matter loss, as
was history of major depression, while treatment for depression de-
celerated this decline (Elbejjani et al., 2015). Another study in a sample
of patients with major depressive disorder (MDD) demonstrated in a
cross-sectional study, that putamen volume showed a steeper decline in
patients than in controls, i.e. group by age interaction (Sacchet et al.,
2017). The limitation of previous studies is related to the limited as-
sessment of single brain regions, rather than the entire brain, and to the
application of univariate statistical approaches only. In contrast, mul-
tivariate statistics take into account a wealth of parameters, aiming to
extract meaningful patterns (rather than singular parameters), which
best describe or predict a phenomenon like accelerated aging.

In this present pilot study, we used BrainAGE (brain age gap esti-
mate) to test the hypothesis, that major depression is associated with a
systems-level signature of accelerated brain aging. While there has been
at least one previous study using BrainAGE in (amongst others) a MDD
cohort (Koutsouleris et al., 2014), there is currently lack of replication
and also a lack of understanding whether MDD patients (without co-

https://doi.org/10.1016/j.pscychresns.2019.06.001
Received 24 January 2019; Received in revised form 7 June 2019; Accepted 11 June 2019

⁎ Corresponding author.
E-mail addresses: bianca.besteher@med.uni-jena.de (B. Besteher), nenadic@staff.uni-marburg.de (I. Nenadić).

Psychiatry Research: Neuroimaging 290 (2019) 1–4

Available online 11 June 2019
0925-4927/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09254927
https://www.elsevier.com/locate/psychresns
https://doi.org/10.1016/j.pscychresns.2019.06.001
https://doi.org/10.1016/j.pscychresns.2019.06.001
mailto:bianca.besteher@med.uni-jena.de
mailto:nenadic@staff.uni-marburg.de
https://doi.org/10.1016/j.pscychresns.2019.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pscychresns.2019.06.001&domain=pdf


morbidities) would show increased BrainAGE as a putative marker of
accelerated aging.

The BrainAGE indicator is based on a voxel-wise analysis of structural
MRI scans and uses a machine learning protocol to estimate the age of an
individual brain based on the MRI scan and integrating the information
across all grey-matter voxels (Franke et al., 2010; Gaser et al., 2013). In-
tegrating multi-variate statistics into a singular value, the actual chron-
ological age is then subtracted from this score in order to derive a metric of
accelerated (or delayed) aging. This parameter has been applied in several
studies (Franke et al., 2013; Gaser et al., 2013; Hajek et al., 2019), and we
recently showed using BrainAGE that schizophrenia, but not bipolar af-
fective disorder was associated with accelerated aging, as compared to
healthy controls and across disorders (Nenadic et al., 2017). Hence, re-
plication of initial studies (Koutsouleris et al., 2014) is needed.

2. Methods

2.1. Sample

We recruited patients meeting DSM-IV criteria for major depression
(n=38) and psychiatrically healthy control subjects from the local
community (n=40), which were matched for age (ANOVA, p=0.318)
and gender (chi square test, p=0.624). Prior to study participation, all
subjects provided written informed consent to a study protocol ap-
proved by the ethics committee of the Friedrich-Schiller-University of
Jena Medical School.

MDD patients were recruited from the in-patient and out-patient
services of Jena University hospital. They underwent a full clinical
SKID-I interview by a psychiatrist (B.B.), who assured that they all met
criteria for current or previous major depressive episodes, and thus had
either single major depressive episodes or recurrent MDD. None of
these patients had a co-morbid axis I psychiatric disorder and they were
all screened for absence of an axis II disorder / personality disorder,
which was further assured by chart reviews. None of the MDD patients
had psychotic symptoms.

Healthy control subjects were also screened by a psychiatrist (B.B.)
to ensure absence of a current or previous psychiatric disorder or psy-
chotherapeutic treatment.

None of the study participants had a n untreated major medical
condition (e.g. uncontrolled hypertension or diabetes), a current or
previous central neurological disease, traumatic brain injury with loss
of consciousness > 5 min, or learning disability. In addition, none of
the subjects was suffering from clinical obesity.

Clinical and demographic characteristics are given in Table 1.

2.2. Magnetic resonance image (MRI) acquisition and analysis

Using a 3 Tesla Siemens Prisma fit scanner, we obtained T1-
weighted MPRAGE (TR 2300ms, TE 2.07ms, α 9°, 192 contiguous sa-
gittal slices, in-plane field of view 256mm, voxel resolution
1×1×1mm; 5:21min acquisition time) for each participant. Scans
were visually inspected for artefacts and in addition they passed the
automated quality assurance protocol implemented in VBM8 software
(http://dbm.neuro.uni-jena.de/vbm8).

We pre-processed MRI scans using the BrainAGE protocol
(Franke et al., 2010), as previously described in a recent analysis of
schizophrenia and bipolar disorder patients (Nenadic et al., 2017). This
included correction for field inhomogeneities, spatial normalisation and
segmentation using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/
vbm8) und the SPM8 software (http://www.fil.ion.ucl.ac.ik/spm/)
running under Matlab. Finally we applied affine spatial registration and
Gaussian smoothing with 4mm full-width-at-half-maximum (FWHM)
and resampled data to 4mm.

For BrainAGE calculation, we applied a relevance vector regression
(RVR; (Tipping, 2001)), as described previously. Details have been re-
ported in our previous publications on BrainAGE (Nenadic et al., 2017).
We used 743 healthy controls subjects (mean age: 43.93 y; 316 male,
427 female) of the IXI (https://brain-development.org/ixi-dataset/)
and OASIS (https://www.oasis-brains.org/) databases for training of
our BrainAGE framework. In order to adjust for scanner effects, we
estimated the quadratic age trend of BrainAGE using the healthy con-
trol subjects and removed this trend from all BrainAGE estimates.

2.3. Statistical analysis

For statistical analysis, we considered a two-sample T-test with
P < 0.05 to assess group differences between the MDD patients and
healthy controls.

Given the limited sample size, we also used G*Power 3.1 to perform
a post hoc calculation of the achieved power.

3. Results

MDD patients and healthy controls did not differ in age or gender
distribution.

Mean BrainAGE scores of MDD patients and healthy controls did not
differ significantly (p=0.63), see also Table 2.

G*Power calculation showed that with a one-tailed t-test with
groups of n=38 and n=40, respectively, and an alpha error of 0.05,
the power of this sample would amount to 0.968 for a large effect size
(Cohen's d=0.8), and 0.706 for a medium effect size (Cohen's d=0.5),
respectively (Fig. 1) .

Table 1
Clinical and demographic characteristics of sample.

Major depressive disorder
(MDD) patients

Healthy
controls (HC)

N 38 40
(female / male) (21 f / 17m) (20 f / 20m)
Mean age in years (SD) 45.65 42

(15.68) (13.17)
Age range 19 – 66 years 21 – 73 years
First-episode / multiple episodes n=9 first episode,

n=29 recurrent episodes
Concurrent depressive symptoms:

mean BDI score (SD)
24.19 (10.64)
ange: 3–42

Psychotropic medication n=27 patients with long-
term medication (>14d)
n=5 patients with short
term medication (<14d)
n=6 off medication

Table 2
BrainAGE scores in patients with major depressive disorder (MDD) vs. healthy
controls (HC).

BrainAGE scores Major depressive disorder (MDD)
patients

Healthy controls (HC)

Mean 0.412 0.00
Median 0.438 −0.596
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4. Discussion

Our findings do not support accelerated aging in major depression
to be observable applying the BrainAGE approach. While our post-hoc
power estimation indicates that sample sizes might have been too small
to detect small effects, it still shows that more robust larger effect sizes
would have been detectable with >0.9 power. However, this limitation
in sample size also precluded further analysis of subsamples within the
MDD group: if BrainAGE changes were only present in a subgroup of
MDD patients, these might not have been detected in a simple group
comparison.

While the overall negative finding does not generally argue against
the possibility of accelerated aging in MDD in single brain regions or on
the molecular level (e.g. single brain areas or cell types might show
accelerated aging in MDD undetected by the BrainAGE framework ap-
plied here), our results do not support accelerated aging to be related to
MDD on a (macroscopic) systems or brain-wide level. In our inter-
pretation of these findings, we aim to link both systems-level and mo-
lecular findings with regards to regional vs. global brain aging in MDD,
and shall discuss the effects of psychiatric vs. non-psychiatric factors on
BrainAGE, as well as limitations of our study design.

Unlike a previous study including MDD patients showing increased
BrainAGE in MDD relative to healthy controls (Koutsouleris et al.,
2014) and previous positive studies in schizophrenia and mixed find-
ings in bipolar disorder (Hajek et al., 2019; Koutsouleris et al., 2014;
Nenadic et al., 2017; Schnack et al., 2016), and first-episode psychosis
(Kolenic et al., 2018), this study failed to find elevated BrainAGE scores
in major depression on BrainAGE scores. While the initial study be
Koutsouleris and colleagues did find elevated BrainAGE scores in MDD
compared to healthy controls, a recent study in a healthy cohort ana-
lyzing effects of negative fateful life events also found an association of
depressive symptoms with a similar indicator or brain aging
(Hatton et al., 2018). Additional unpublished data in 211 MDD patients
suggest a brain age gap of 0.8 years for MDD (Kaufmann et al.; pre-print
at: https://www.biorxiv.org/content/biorxiv/early/2018/04/17/
303164.full.pdf), and it also suggests that effect sizes might be rather
low (in their study: Cohen's d=0.1). It is worthwhile noting, that the
BrainAGE indicator operates on a systems level and integrates data
from voxels across the entire brain to derive a single metric for each
individual. Hence, although being one single score, it intregrates a
multi-variate information across the brain. It is therefore still possible
that accelerated aging might occur in single regions (as opposed to
multiple areas across the brain) as in schizophrenia or other disorders

(Hajek et al., 2019; Kolenic et al., 2018; Nenadic et al., 2017; Schnack
et al., 2016). Another methodological consideration to take into ac-
count is that the pre-processing with BrainAGE involves large learning
samples and thus an age-related trajectory defining a standard norm,
rather than diagnosis by age interaction analyses that have previously
been used to index accelerated aging from cross-sectional MRI data
(Nenadic et al., 2012; Sacchet et al., 2017). The BrainAGE score might,
however, also be modulated by other factors such as obesity
(Kolenic et al., 2018). Given that we did not include clinically obese
patients or those with a manifest metabolic syndrome or uncontrolled
diabetes, this is unlikely to have resulted in our negative findings, but
might need consideration in future studies. However, other factors like
oxidative stress or inflammation, which might also modulate age-re-
lated changes in MDD were not included in our study, so we could not
test the hypothesis that these might mediate diagnosis-related differ-
ences. Similarly, psychiatric co-morbidities are unlikely to account for
our findings, as they were absent in our MDD sample. Effects of anti-
depressant medication, as shown in previous imaging studies
(Frodl et al., 2008), might add variance to regional brain volumes and
thus impact on accuracy of BrainAGE or introduce bias; however, un-
like antipsychotics, the direction of antidepressant-associated volume
change is towards regional increase, so they would be expected to ra-
ther result in smaller BrainAGE score than false positives.

Our negative finding should also be considered in view of the
clinical and neurobiological heterogeneity of major depression. For
example, childhood maltreatment has been linked to variation in brain
structure in MDD, modulating both the regional distribution of sig-
nificant changes as well as effect magnitude (Opel et al., 2014; Teicher
et al., 2018). Interestingly, childhood maltreatment, including physical
neglect, might be a particular risk factor for aging-related molecular
markers such as telomere length in MDD (Vincent et al., 2017). These
might be associated with stress, thus leading to telomere changes which
can be also detected in peripheral leukocyte (Wolkowitz et al., 2011).
However, as a limitation of our study, we cannot infer on potential
subgroups, given sample size as well as the limited knowledge on which
biological processes and putative modulators might underlie ac-
celerated aging in psychiatric disorders. The current literature on bio-
logical aging in major depression is limited with regards to the study of
disease subtypes, as well as severity or chronicity.

Considering the hypothesis of accelerated brain aging on multiple
biological levels, we might finally also consider molecular findings.
There is indeed some evidence that some markers reflect systems-level
changes while other are restricted to particular neural networks. For
example, while telomere length-based indicators can be obtained from
peripheral cells (leukocytes), there are also neuropathological studies of
brain tissue, allowing differentiation of regional effects. Indeed, a re-
cent post-mortem study investigating telomere length as a molecular
marker of cellular aging showed regionally specific changes in the
hippocampus of patients with MDD, but not amygdala, dorsolateral
prefrontal cortex, nucleus accumbens, or substantia nigra
(Mamdani et al., 2015). This would suggest regional specificity and
argue against a global systems-level effect in the brain. It would thus be
conceivable that such effects are expressed in singular brain regions
rather than across the cortex or brain grey matter. However, post
mortem studies themselves are limited in the choice of regions assessed,
and therefore mostly cover selected regions of interest rather than the
entire brain.

Additionally, genetic and epigenetic effects might substantially
contribute on the impact that stressful life events might have on both
symptoms and brain structural changes. Higher polygenic risk for de-
pression and anxiety in a large female population was related to telo-
mere shortening (Chang et al., 2018). Nikolova and colleagues noted
that FREM3 related genetic variation in human subjects might be linked
to risk for MDD as well as intermediate phenotypes such as amygdala
activity and cognitive speed (Nikolova et al., 2015). Also, a large case-
control study demonstrated that epigenetic markers of aging both in

Fig. 1. Violin plot of the distribution of BrainAGE (brain age estimation gap)
scores for patients with major depressive disorder (MDD) vs. psychiatrically
healthy controls (HC). The group difference was not significant (t-test, p=0.63).
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peripheral and brain cells are related to clinical depression, and within
the MDD patient group in particular with childhood trauma (Han et al.,
2018). So far, it is not clear, how the observed telomere changes (either
in blood or brain cells) are related to brain structural variation seen in
MRI.

There are several limitations to consider in our study, and in par-
ticular the small sample size. This limits our ability to detect small to
moderate effects, so the negative finding might have been a mere ex-
pression of lack of statistical power. Also, it is not clear how and
whether co-morbidities affect accelerated aging in MDD. Given the
selection in recruitment, our study is limited to a non-psychotic MDD
phenotype without axis I or II co-morbidities. While this might give the
advantage of limiting effects of other co-occurring conditions, we need
to acknowledge that many MDD patients have co-morbid disorders. As
with many other imaging markers, replication of studies is necessary,
and despite the initial positive findings on MDD (Koutsouleris et al.,
2014), there is a need for further replication and extension of findings
as well as modifying factors. While our study therefore provides rather
incremental advance, it provides an initial data set on a clinically se-
lected pilot cohort, which fails to replicate the effects of larger samples
(Koutsouleris et al., 2014) (Kaufmann et al.; pre-print at: https://www.
biorxiv.org/content/biorxiv/early/2018/04/17/303164.full.pdf).

Altogether, the current emerging literature on accelerated aging in
affective disorders lacks a conclusive evidence across the molecular,
cellular, and network levels. In particular, there is a lack of studies in
patients that would include both MRI based markers like BrainAGE to
be combined with telomere length or other markers that might be
available from blood samples.

5. Conclusion

In conclusion, our study failed to provide evidence for accelerated
brain aging in a sample of MDD patients (without co-morbidities) as
indicated by the BrainAGE score. However, further study in particular
clinical subgroups is warranted to detect potential subtle changes,
which might provide insights into systems-level brain aging related to
clinical or genetic factors.
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