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Brain morphology varies during the course of the menstrual cycle, with increases in individual gray matter
volume at the time of ovulation. This study implemented our previously presented BrainAGE framework to
analyze short-term neuroanatomical changes in healthy young women due to hormonal changes during the
menstrual cycle. The BrainAGE approach determines the complex multidimensional aging pattern within the
whole brain by applying established kernel regression methods to anatomical brain MRIs. The “Brain Age Gap
Estimation” (i.e., BrainAGE) score is then calculated as the difference between chronological age and estimated
brain age. Eight women (21–31 years) completed three to four MRI scans during their menstrual cycle (i.e., at
(t1) menses, (t2) time of ovulation, (t3) midluteal phase, (t4) next menses). Serum levels of estradiol and
progesterone were evaluated at each scanning session.
Individual BrainAGE scores significantly differed during the course of the menstrual cycle (p b 0.05), with a
significant decrease of −1.3 years at ovulation (p b 0.05). Moreover, higher estradiol levels significantly
correlated with lower BrainAGE scores (r = −0.42, p b 0.05). In future, the BrainAGE approach may serve as a
sensitive as well as easily implementable tool to further explore the short-term and maybe long-term effects
of hormones on brain plasticity and its modulating effects in lifestyle-related diseases and dementia.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Animal research suggests that hippocampal synaptic density chang-
es rapidly during the menstrual cycle, mediated by estrogen (Woolley
and McEwen, 1992; Gould et al., 2000; Yankova et al., 2001). Recently,
it was demonstrated that brainmorphology varies across themenstrual
cycle also in humans. At the time of ovulation, significant volume
increase of about 1.8% in gray matter (GM) as well as corresponding
significant volume decrease in cerebro-spinal fluid (CSF) of 4.4% was
shown (Hagemann et al., 2011). Studies comparing regional volumes
in women during different phases of the menstrual cycle found
increased GM in the right anterior hippocampus and decreased GM in
the right dorsal basal ganglia (globus pallidus/putamen) in the
postmenstrual, high-estrogen, late-follicular phase (Days 10–12 after
onset of menses; Protopopescu et al., 2008) as well as larger GM
volumes in the right fusiform/parahippocampal gyrus during the early
follicular phase (i.e., between onset of menstruation to 5 days before
ovulation; Pletzer et al., 2010). Thus and amongst others, individual
brain structure in adulthood is influenced by hormonal factors
roup, Department of Psychiatry,
.: +49 3641 934751; fax: +49
(Breedlove and Jordan, 2001; Melcangi and Panzica, 2006; Balu and
Lucki, 2009). Furthermore, a neuroprotective role for estrogen on age-
related brain atrophy was previously suggested (Eberling et al., 2003),
whereas long-term decline in brain volume was observed in postmeno-
pausal women and in women receiving antiestrogens (Eberling et al.,
2004; Erickson et al., 2005).

This study analyzed the short-term effects of hormonal changes
during the menstrual cycle on individual BrainAGE estimations. Based
on the widespread but well-ordered brain tissue loss that occurs with
healthy aging into senescence (Good et al., 2001), we previously pro-
posed a modeling approach to identify abnormal aging-related brain
atrophy that may precede the onset of cognitive decline and clinical
symptoms. The novel BrainAGE approach (Franke et al., 2010; Franke
et al., 2012b) is based on a database of structural magnetic resonance
imaging (MRI) data that aggregates the complex, multidimensional
aging patterns across the whole brain to one single value, i.e. the esti-
mated brain age. The difference between estimated and true chronolog-
ical age will reveal the individual brain age gap estimation (BrainAGE)
score. Consequently, the BrainAGE score directly quantifies subtle devi-
ations in “normal” age-related brain atrophy by analyzing only one
standard MRI per subject, with positive BrainAGE scores indicating
accelerated structural brain aging and negative BrainAGE scores indicat-
ing attenuated structural brain aging. The BrainAGE framework has been
shown to accurately and reliably estimate the age of individual brains

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.04.036&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2015.04.036
mailto:katja.franke@uni-jena.de
http://dx.doi.org/10.1016/j.neuroimage.2015.04.036
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg


2 K. Franke et al. / NeuroImage 115 (2015) 1–6
withminimal preprocessing andparameter optimization using anatom-
ical MRI scans (Franke et al., 2010; Franke et al., 2012a). Additionally,
this method demonstrated its potential to identify pathological brain
aging on an individual level, with increasing BrainAGE scores being
related to measures of clinical disease severity in patients with
Alzheimer's disease (AD) and prospective decline in cognitive function-
ing (Franke et al., 2012a), conversion to AD (Gaser et al., 2013), as well
as diabetes mellitus type 2 (Franke et al., 2013).

Here, the BrainAGE framework was implemented to identify and
quantify individual short-term neuroanatomical changes in healthy
youngwomen due to hormonal changes during themenstrual cycle. Fur-
thermore, the relations between individual hormone levels (i.e., estradiol
and progesterone) and BrainAGE scores were explored.

Methods

Subjects

To train the age estimation framework, we used MRI data of 561
healthy subjects [250 male] from the publicly accessible IXI cohort
(http://www.brain-development.org; data downloaded in September
2011) aged 20–86 years [mean (SD)=48.6 (16.5)], whichwere collect-
ed on three different scanners (Philips 1.5 T, General Electric 1.5 T,
Philips 3.0 T). For more sample details see Franke et al. (2010).

The current BrainAGE analyses were conducted using existing MR
scans of 16 healthy volunteers (8 females, age range 21–31 years; 8
males, age range 23–37 years) that were already used in Hagemann
et al. (2011). The study protocol was approved by the local ethics com-
mittee. All subjects gave written informed consent. Confounding co-
morbidity was excluded by an interview, with special emphasis on
endocrine dysfunction and hypertension. No subjects were on medica-
tion, including hormonal contraceptives. All volunteers were asked to
refrain from alcohol consumption the night before and coffee intake
the morning before scanning. Each scanning session was scheduled
early in the morning at the same time (7:30 am), with minimal food
and fluid intake. Each male was paired with a female and scanned in
one recording session at three time points during the respective men-
strual cycle. Scanning took place during menses (t1), at time of ovula-
tion (t2), in the midluteal phase (t3). Half of the women as well as
their paired male subjects were scanned again at their next menses
(t4). Only women known to have an ovulational cyclus were allowed
for the scanning protocol. This was achieved by an intravaginal ultra-
sound performed by an experienced gynecologist. To ascertain an
ovulational cyclus and the time point of ovulation (t2) during the
month the actual MR-scanning took place, ultrasound was repeated
and scanning at t2 took place the day after a follicle ready for ovulation
was detected. Furthermore, in women, blood samples were taken at
each scanning session and serum levels of estradiol and progesterone
were evaluated, while excluding other hormonal alterations (thyroid
function, testosterone, cortisol). For quantification of sex steroid hor-
mones ElektroChemiLumineszenzImmunoAssay (ECLIA) was used.
Assays were performed using the E170 Module (Roche E170 Modular
Analytical System®).

MRI

Image datawere acquired on a 1.5 T SiemensVision using a standard
birdcage head coil with a T1-weighted fl3d Gradient Echo Sequence
(GRE, TR = 15 ms, TE = 5 ms, α = 30°, 192 slices, sagittal orientation,
voxel size 1 × 1 × 1 mm3). To increase the signal-to-noise ratio and to
minimize the effects of different head positioning, subjects were
scanned twice at each recording session with the subject exiting the
scanner between scans. A longitudinal design with several repeated
measures was used as this is much more powerful than a simple
cross-sectional design with only one measure per subject (Lui and
Cumberland, 1992; Vickers, 2003). Data were visually checked for
artifacts and any structural pathology.

Preprocessing of MRI data and data reduction

Preprocessing of the T1-weighted images was done using the SPM8
package (http://www.fil.ion.ucl.ac.uk/spm) and the VBM8 toolbox
(http://dbm.neuro.uni-jena.de), running under MATLAB. All T1-weighted
images were corrected for bias-field inhomogeneities, then spatially nor-
malized and segmented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) within the same generative model (Ashburner
and Friston, 2005). The segmentation procedure was extended by
accounting for partial volume effects (Tohka et al., 2004), by applying
adaptive maximum a posteriori estimations (Rajapakse et al., 1997),
and by using a hidden Markov random field model (Cuadra et al.,
2005). The images were spatially normalized using an affine registration
and smoothed with 8-mm full-width-at-half-maximum smoothing
kernels. Spatial resolution was set to 8 mm. For further data reduction,
principal component analysis (PCA) was performed on the training sam-
plewith subsequently applying the estimated transformation parameters
to the test sample. PCA was done using the ‘Matlab Toolbox for Dimen-
sionality Reduction’ (http://ict.ewi.tudelft.nl/~lvandermaaten/Home.
html), running under MATLAB.

Age estimation framework

The BrainAGE framework utilizes amachine-learning pattern recogni-
tionmethod, namely relevance vector regression (RVR; Tipping, 2001). It
was recently developed to estimate individual brain ages based on T1-
weighted images (Franke et al., 2010). In general, the model is trained
with preprocessedwhole brain structuralMRI data of the training sample
(here: the IXI sample). Subsequently, the brain age of each test subject
can be estimated using the individual tissue-classified MRI data, aggre-
gating the complex, multidimensional aging pattern across the whole
brain into one single value (Fig. 1A). The difference between estimated
and true chronological agewill reveal the individual brain age gap estima-
tion (BrainAGE) score. Consequently, the BrainAGE score directly quan-
tifies the amount of acceleration or deceleration of brain aging. For
example, if a 70 year old individual has a BrainAGE score of +5 years,
this means that this individual shows the typical atrophy pattern of a
75 year old individual (Fig. 1B). Recent work has demonstrated that
this method provides reliable and stable estimates, with BrainAGE scores
in control subjects remaining the same during the follow-up period of up
to 4 years, thus indicating only normal age-related atrophy (Franke et al.,
2012a; Franke et al., 2013). Additionally, BrainAGE scores calculated from
two shortly delayed scans on the same MRI scanner, as well as on sepa-
rate 1.5 T and 3.0 T scanners, produced intraclass correlation coefficients
(ICC) of 0.93 and 0.90, respectively (Franke et al., 2012a).

Within this study, the BrainAGE framework was applied using
preprocessed (as described in the section ‘Preprocessing of MRI data
and data reduction’) GM images. In Franke et al. (2010) it was already
shown that performancemeasures for age estimation showed no differ-
ences when test data were collected on a scanner that was not included
in training of the age estimationmodel. Therefore, accounting for possi-
ble difference between the scanners used in the training dataset and the
test dataset was not necessary. Furthermore, because we use relative
changes between the time points these values would be not affected
by any differences due to use of different scanners for training and
testing.

For training the brain age estimation model as well as for predicting
individual brain ages, we used “The Spider” (http://www.kyb.mpg.de/
bs/people/spider/main.html), a freely available toolbox running under
MATLAB. For an illustration of the most important features (i.e., the
importance of voxel locations for regression with age) that were used
by the RVR to model normal brain aging andmore detailed information
please refer to Franke et al. (2010).
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Fig. 1.Depiction of the BrainAGE concept. A: Themodel of healthy brain aging is trainedwith the chronological age and preprocessed structural MRI data of a training sample (left; with an
exemplary illustration of the most important voxel locations that were used by the age regression model). Subsequently, the individual brain ages of previously unseen test subjects are
estimated, based on theirMRI data (blue; picturemodified from Schölkopf and Smola (2002)). B: Thedifference between the estimated and chronological age results in theBrainAGE score.
Consequently, positive BrainAGE scores indicate accelerated brain aging. (Image reproduced from Franke et al. (2012a), with permission from Hogrefe Publishing, Bern.)
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Statistical analysis

The effect of time point during menstrual cycle (i.e., t1: menses, t2:
time of ovulation, t3: midluteal phase, t4: next menses) on hormone
levels (i.e., estradiol and progesterone), GM, WM, CSF volumes, and
BrainAGEwas explored using analysis of variance (ANOVA). Determining
values at t1 as individual baseline scores, changes in BrainAGE at t2, t3,
and t4 were analyzed using one-sample t-test. To control for random
effects during study time, these analyses (except for hormone levels)
were also conducted in the paired male subjects, scanned at the same
time points during the respectivemenstrual cycle. Further, receiver oper-
ating characteristics (ROC) for the time points during menses based on
BrainAGE scores, GM,WM, andCSF volumeswere computed in the female
as well as the male sample, resulting in the area under the ROC curve
(AUC), which is also known as C-statistics or c-index. The AUC allows
judging the quality of the classification, with 1.0 indicating a perfect
discrimination and 0.5 indicating a result obtained by chance only. In
order to compare the ability for discrimination, one-tailed z-tests are per-
formed to test whether the resulting AUC derived from BrainAGE ROC
analysis is statistically greater than the AUCs derived from ROC analysis
with GM, WM, and CSF volumes. Pearson's pairwise correlation was
used to assess the relationship between BrainAGE scores and hormone
levels (i.e., estradiol, progesterone) during menstrual cycle in women.
Table 1
Characteristics of the test sample.

Female

Mean (SD)

No. subjects 7

Age range 21–31

Estradiol level (nmol/l) t1 0.11 (0.05)
t2 0.77 (0.31)
t3 0.41 (0.22)
t4⁎ 0.22 (0.16)

Progesterone level (nmol/l) t1 2.7 (0.6)
t2 4.3 (2.7)
t3 33.0 (33.8)
t4⁎ 5.6 (5.5)

BrainAGE score (years) t1 0.41 (0.65)
t2 −0.87 (0.99)
t3 0.46 (1.13)
t4⁎⁎ 0.57 (0.83)

Notes: t1—menses, t2—ovulation, t3—midluteal phase, and t4—next menses.
Italic type = reduced sample size with ⁎ n = 3, ⁎⁎ n = 4. Bold type = significant test results.
Calculation of effect size and statistical power was performed utiliz-
ing the “AI-Therapy Statistics toolbox” (https://www.ai-therapy.
com/psychology-statistics/). All other statistical testing was performed
using MATLAB 7.10. (www.mathworks.com).
Results

One woman showed no increase in progesterone at t3, indicating
missing ovulation, and was excluded, along with the matched male.
So, data from seven females and seven males were included in further
analyses.

Estradiol and progesterone levels changed significantly duringmen-
strual cycle in women (Table 1), with estradiol levels significantly
increasing at the time of ovulation, then significantly decreasing in the
midluteal phase (p b 0.05; Fig. 2), and progesterone levels being signif-
icantly elevated after ovulation (p b 0.05; Fig. 2). Overall GM, WM, and
CSF volumes did not differ over the course of the menstrual cycle
(i.e., t1:menses, t2: timeof ovulation, t3:midluteal phase, t4: nextmen-
ses), neither in men nor in women (data not shown here). Please note,
in contrast to Hagemann et al. (2011) these results rely on overall brain
tissue volumes that were averaged across all male/female subjects for
means of comprehensive sample characterization, whereas Hagemann
Male

F statistic Mean (SD) F statistic

– 7 –

– 23–37 –

11.6 [p = 0.0001] – –

–

–

–

4.04 [p = 0.02] – –

–

–

–

3.48 [p = 0.03] 0.37 (0.65) 0.62 [p = 0.61]
−0.20 (1.27)
−0.17 (1.22)
−0.45 (0.98)

https://www.ai-therapy.com/psychology-statistics/
https://www.ai-therapy.com/psychology-statistics/
http://www.mathworks.com


Fig. 2. Quantitative hormonal changes during the menstrual cycle for estradiol and
progesterone in the female sample. In estradiol (top chart), there is a significant increase at
the time of ovulation and a significant decrease in the midluteal phase (p b 0.05, asterisk).
Progesterone levels (bottom chart) are significantly elevated after ovulation (p b 0.05, aster-
isk). t1: menses, t2: ovulation; t3 midluteal phase; and t4: next menses. The data are
displayed as boxplots, containing the values between the 25th and 75th percentiles of the
samples, including themedian (gray lines). Lines extending above and below each box sym-
bolize data within 1.5 times the interquartile range (outliers are displayed with a +). The
width of the boxes depends on the sample size. Note: reduced sample size at t4.
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et al. (2011) analyzed individual changes in brain tissue volumes in re-
lation to individual baseline brain tissue volumes.

In women, BrainAGE scores significantly differed during menstrual
cycle (F = 3.48, p b 0.05; Table 1), with BrainAGE scores decreasing by
−1.27 years (SD= 1.23; p b 0.05) from t1 to t2 (i.e., ovulation; Fig. 3).
Calculation of the effect size for ovulation on BrainAGE resulted in d =
1.52, while statistical power was 0.91. Changes in individual BrainAGE
scores from t1 to t3 as well as t4 resulted in 0.05 years (SD= 1.56; p =
0.93) and0.10 years (SD=0.56;p=0.74), respectively. Inmen,BrainAGE
scores did not differ across scanning time points (F = 0.62, p = 0.61;
Table 1), with mean changes in BrainAGE score of −0.57 (SD = 1.60)
years at t2 (p = 0.38), −0.54 (SD = 1.49) years at t3 (p = 0.37), and
0.40 (SD= 0.97) years at t4 (p= 0.47).

To explore the quality of classification using BrainAGE as compared to
overall GM, WM, and CSF volumes, ROC analysis was conducted. Since
change in individual BrainAGE was significant for t1–t2 in women, data
were classified as being acquired at t1 vs. t2. In the female sample, the
ROC analyses resulted in accuracy rates of 86%, 57%, 43%, and 64%, as
well as AUCs (or c-index) of 0.88, 0.55, 0.51, and 0.55 for BrainAGE scores,
GM,WM, and CSF volumes, respectively (Fig. 4). Performing one-tailed z-
tests showed that AUC derived from ROC analysis based on BrainAGE is
statistically greater than AUCs derived from ROC analysis with GM, WM,
and CSF volumes (p b 0.05). Thus, classification between time of menses
vs. time of ovulation is much more precise when based on BrainAGE as
compared to GM, WM, and CSF volumes.

As stated above, estradiol levels are elevated at t2, whereas proges-
terone levels are elevated at t3. Lower BrainAGE scoreswere significant-
ly correlated to higher estradiol levels (r = −0.42, p b 0.05; Fig. 5),
whereas progesterone levels did not correlate with individual BrainAGE
scores (r = 0.08, p = 0.71).

Discussion

The scope of this study was the quantification of the effects of hor-
monal changes during the course of the menstrual cycle on individual
BrainAGE estimations using a novel MRI-based biomarker derived from
the recently presented BrainAGE framework. The BrainAGE approach
was applied to seven women, who got three to four MRI scans during
their menstrual cycle. The results provide evidence that hormonal chang-
es across the course of the menstrual cycle have significant effects on
individual brain structure. Thus, this study supports the results presented
in Hagemann et al. (2011), which gave evidence of short-term hormone-
dependent structural brain changes during the course of the menstrual
cycle in humans. In detail, Hagemann et al. (2011) showed significant
increases in individual GM volumes at the time of ovulation, possibly
due to fast modulation of synaptic plasticity by estrogen (Baroncini
et al., 2010; Mukai et al., 2010). The results presented here show a corre-
sponding pattern, with individual BrainAGE scores based on GM images
significantly decreasing at time of ovulation.

Furthermore, classifying individual brain structure as being scanned
at either time of menses or time of ovulation was more precise using
BrainAGE as compared to overall GM,WM, and CSF volumes. If BrainAGE
would simply reproduce overall GM,WMor CSF volume, AUCs aswell as
classification accuracies based on BrainAGE or brain tissue volumes
would be similar. Consequently, the information content of BrainAGE,
which aggregates thewide-spread,multidimensional GMpattern across
thewhole brain, appears to bemuchhigher as compared to overall brain
tissue volumes.

Even more interesting, higher levels in estradiol levels were signifi-
cantly related to lower BrainAGE scores. Previous BrainAGE studies in
elderly subjects showed increasing BrainAGE scores being related
to measures of clinical disease severity in patients with Alzheimer's
disease and prospective decline in cognitive functioning (Franke et al.,
2012a; Gaser et al., 2013). Research on sex hormones suggested a neuro-
protective role for estrogen on age-related brain atrophy and cognition,
whereas increased brain atrophy, faster decline and greater deterioration
of cognition, as well as higher risk for AD were observed in postmeno-
pausal women and in women receiving antiestrogens (Eberling et al.,
2003; Eberling et al., 2004; Erickson et al., 2005; Sherwin, 2006; Shuster
et al., 2010;Witte et al., 2010; Li et al., 2014; Li and Singh, 2014). Further-
more, estrogenwas found to protect premenopausal females from the ad-
verse effects of obesity and metabolic complications of inflammation,
such as cardiovascular disease (Shi et al., 2009; Morselli et al., 2014).
However, the prevalence of metabolic disorders is significantly increased
in postmenopausal women (Ford, 2005), suggesting an important role of
estrogen in modulating the effects of those lifestyle-related diseases.
Amongst others, themetabolic syndrome and obesity are strongly associ-
atedwith lower brain volume (Enzinger et al., 2005; Debette et al., 2010),
advanced brain aging (Franke et al., 2014) as well as increased risk for
dementia in late-life (Chen et al., 2009; Fitzpatrick et al., 2009). Within
this study, the BrainAGE approach demonstrated its ability to depict
even short-term effects of brain volume variations probably related to
estrogen levels. Therefore, future work may incorporate the BrainAGE
approach to further explore the modulating effects of hormones in (life-
style-related) diseases and dementia.

At a first glance, the actual sample size in this study of n=7 for each
group seems to be quite low. However, a longitudinal design with
repeated measures is much more powerful than a simple cross-
sectional design with only one measure per subject, because the sam-
ple size necessary for obtaining the same statistical power decreases
with increasing number of repeated measures (Lui and Cumberland,
1992). In practice, while achieving the same statistical power the sam-
ple size for typical values in variance decreases to 50–79% for three
repeated measures in a longitudinal design as compared to a single
time point measure in a cross-sectional design (Vickers, 2003). With
an effect size of d= 1.5 and achieved statistical power of 0.9, the effect
of ovulation on BrainAGE in women proves to be profound.

Taking a closer look into regional volume differences across the men-
strual cycle, increasedGMvolumes in hippocampal and parahippocampal
structures during the postmenstrual, high-estrogen, follicular phase in



Fig. 3. Change in BrainAGE scores during the menstrual cycle in women and at corresponding time points in men, respectively. In women (left chart), BrainAGE scores significantly de-
creased by−1.27 years (SD = 1.23) at time of ovulation (p b 0.05, asterisk), whereas no differences could be found in men (right chart). The data are displayed as boxplots, containing
the values between the 25th and 75th percentiles of the samples, including the median (red/blue lines). Lines extending above and below each box symbolize data within 1.5 times the
interquartile range. The width of the boxes depends on the sample size. Note: reduced sample size at t4.
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humans were recently reported (Protopopescu et al., 2008; Pletzer et al.,
2010). On the other hand,with normal aging the hippocampusundergoes
structural and biochemical changes, decreasing in (late) adulthood
(Driscoll et al., 2003; Jernigan and Gamst, 2005; Knoops et al., 2012). Ad-
ditionally, increased volume loss in hippocampal and parahippocampal
structures was also observed in several disease states, like depression
(Sheline et al., 1996; Sheline et al., 1999; Bremner et al., 2000; Sheline
et al., 2003; Colla et al., 2007; Balu and Lucki, 2009), schizophrenia
(Adriano et al., 2012), diabetes mellitus (Gispen and Biessels, 2000;
Gold et al., 2007), or Alzheimer's disease (Henneman et al., 2009; Schuff
et al., 2009). Applying the BrainAGE approach to various populations, its
ability to recognize subtle changes in individual brain structure in depres-
sive subjects (Franke et al., 2013), schizophrenia (Koutsouleris et al.,
2014), diabetesmellitus (Franke et al., 2013), and even health parameters
(Franke et al., 2014), as well as its superiority over state-of-the-art
biomarkers in predicting AD (Gaser et al., 2013) or differentiating neigh-
boring age groups in healthy children and adolescents (Franke et al.,
2012b) was recently demonstrated. Additionally, with an intraclass
Fig. 4. ROC curves in women for t1 (menses) vs. t2 (ovulation). ROC curves for individual
classification as t1 (menses) vs. t2 (ovulation) based on BrainAGE scores, GM,WM, and CSF
volumes in the female sample, resulting in the area under the ROC curve (AUC). The AUC
shows the quality of the classification, with 1.0 indicating a perfect discrimination and 0.5
indicating a result obtained by chance only. AUCs based on GM, WM, and CSF volumes
were significantly lower than AUC based on BrainAGE scores (* p b 0.05).
correlation coefficient (ICC) of 0.93 calculated from two shortly delayed
scans the BrainAGEmethod already proved its ability to provide reliable
estimates (Franke et al., 2012a). Therefore, this study strongly suggests
that the BrainAGE framework reliably indicates even temporary neuroan-
atomical changes as for example occurring during the course of themen-
strual cycle. Consequently, in future the BrainAGE method could be
applied tomonitor subtle neuroanatomical changes in longitudinal inter-
vention and treatment studies, e.g. exploring the effects of daily activity,
protective nutrients, or medication on individual brain structure.

Moreover, since themenstrual cycle obviously changes brain volume
(Protopopescu et al., 2008; Pletzer et al., 2010; Hagemann et al., 2011),
this study also encourages future neuroimaging research to account for
sex as well as hormonal status or stage of the menstrual cycle. This
extends the results of previous studies suggesting distinct gender-
specific patterns of health parameters being associated with brain
aging (Franke et al., 2014) as well as the prevention, detection, treat-
ment, and outcome of illnesses affecting men and women differently,
including differences in basic aspects of their normal function and their
experience of the same illness (Pinn, 2003; Grossi et al., 2005; Azad
et al., 2007).

In conclusion, BrainAGE scores decrease during the course of the
menstrual cycle in young women and inversely correlate to estradiol
levels, qualifying the BrainAGE approach to further explore hormonal
influences on brain size and structure. Additionally, in order to identify
Fig. 5. Correlation between BrainAGE scores and estradiol levels in females. Higher estradiol
levels were significantly associated with lower BrainAGE scores (r=−0.42, p b 0.05).
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subtle neuroanatomical alterations, the BrainAGE approach demonstrated
its potential to work very sensitive as well as to be easy to apply since
BrainAGE scores are calculated from structuralMRI, using fully automated
processing techniques. The implications of this studymay lead to a clinical
tool that identifies subtle, yet clinically significant, changes in brain struc-
ture, thus facilitating as well as monitoring early treatment or preventa-
tive interventions, such as hormone replacement therapies.
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