
 
Figure 1. Depiction of the BrainAGE concept. [Image modified from [1], with permission from Hogrefe Publishing, Bern.] 

(A) The model of healthy brain aging is trained with the chronological age and preprocessed structural MRI data of a training sample (left, with an 
exemplary illustration of the most important voxel locations that were used by the age regression model). Subsequently, the individual brain ages of 

previously unseen test subjects are estimated, based on their MRI data (blue; picture modified from [2]). (B) The difference between the estimated and 
chronological age results in the BrainAGE score. Consequently, positive BrainAGE scores indicate accelerated brain aging (blue area). 
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Abstract—This study quantifies the effects of health and 
lifestyle markers on individual brain aging in dementia-free 
elderly subjects, revealed by a relevance vector regression 
approach. In males, markers of metabolic syndrome as well as 
alcohol abuse were significantly related to increased BrainAGE 
scores of up to 9 years. In females, markers of healthy liver and 
kidney functions and an adequate supply of nutrients were 
significantly related to decreased BrainAGE scores.  
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I.  INTRODUCTION 
Early identification of neuroanatomical changes deviating 

from the normal age-related atrophy pattern has the potential 
to improve clinical outcomes in neuropsychiatric and 
neurodegenerative disorders through early treatment or 
prophylaxis [3]. Especially Alzheimer’s disease (AD), the 
most common form of dementia, is widely linked to 
pathological brain aging [4-9].  

Though neuroanatomical aging is characterized by a 
widespread but rather specific pattern of alterations [10, 11], 
multiple factors affect and modify those individual 
trajectories. Several markers of poor health and an 
inappropriate lifestyle were shown to be associated with the 
risk of cognitive decline, greater brain atrophy, and even 
dementia, including the metabolic syndrome, hypertension, 
diabetes, nicotine and alcohol abuse, elevated serum total 
homocysteine (tHcy), and lower levels of vitamin B12 [12-
14]. Furthermore, combination of risk factors was found to 

further boost the risk [15]. In contrast, a healthy and well-
balanced lifestyle, including physical activity, normal body 
weight, smoking cessation, intake of unsaturated fatty acids, 
and moderate alcohol intake, was shown to lower the risk of 
cognitive decline and dementia [16-18].  

Assuming AD to be preceded by precocious / accelerated 
brain aging [6, 19], a straightforward and efficient solution is 
to model healthy brain aging on the one hand, and to identify 
pathological brain atrophy on the other. The recently 
presented BrainAGE approach takes into account the 
widespread, sequential brain tissue loss associated with 
aging. Based on single time-point structural magnetic 
resonance images (MRI), the complex, multidimensional 
aging patterns across the whole brain are aggregated to one 
single value, i.e. the estimated brain age (Fig. 1A). 
Consequently, although using only one MRI scan per subject, 
the deviation in brain atrophy from normal brain aging can 
be directly quantified (Fig. 1B).  

II. METHODS 
A. Data source 

We utilized data obtained from the ADNI database 
(www.loni.ucla.edu/ADNI), including all healthy subjects for 
whom MRI data as well as a battery of physiological and 
clinical parameters at baseline were available (n=211). The 
male sample consisted of 107 healthy subjects, aged 60–88 
years, with a mean age of 75.7 years (SD=5.3 years). The 
female sample contained 104 healthy subjects, aged 62–90 
years, with a mean age of 76.1 years (SD=4.8 years). 
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TABLE I.  COMPARISON OF BRAINAGE SCORES BETWEEN 1ST QUARTILE  
VS. 4TH QUARTILE GROUPS WITHIN THE MALE SAMPLE 

Mean BrainAGE score (years) Male Sample 
(n=107) 1st  4th  p-value 

Albumin (g/dl) 1.00 -0.02 n.s. 
ALT (U/l) 1.23 0.48 n.s. 
AST (U/l) 1.60 -0.84 n.s. 
Total Bilirubin (mg/dl) 0.83 1.62 n.s. 
SBP (mmHg) -2.55 1.29 n.s. 
DBP (mmHg) -3.51 3.56 0.0028 
BMI (kg/m2) -3.44 5.39 0.0001 
Cholesterol (mg/dl) -0.92 1.80 n.s. 
Creatinine (mg/dl) 0.83 1.52 n.s. 
GGT (U/l)  -2.13 3.58 0.0197 
Glucose (mg/dl) -0.87 1.62 n.s. 
MCV (fL) -2.42 -1.71 n.s. 
TSH (µIU/mL) 1.39 -2.24 n.s. 
tHcy (µmol/l)  -0.83 0.55 n.s. 
Triglycerides (mg/dl) -0.40 -0.20 n.s. 
Uric Acid (mg/dl) -4.34 1.87 0.0154 
Vitamin B12 (ng/l)  0.18 -0.51 n.s. 

Abbreviations: ALT, alanin-aminotransferase; AST, aspartat-
aminotransferase; BMI, body mass index; DBP, diastolic blood pressure; 
GGT, γ -glutamyltransferase; MCV, mean erythrocyte cell volume; SBP, 
systolic blood pressure; TSH, thyroid stimulating hormone; tHcy, total 
homocysteine; n.s. = not significant 

B. Preprocessing of MRI data and data reduction 
As described in [1, 20], preprocessing of the T1-weighted 

MR images was done using the SPM8 package 
(http://www.fil.ion.ucl.ac.uk/spm/) and the VBM8 toolbox 
(http://dbm.neuro.uni-jena.de). The images were processed 
with affine registration and smoothed with 8-mm full-width-
at-half-maximum (FWHM) smoothing kernels. Spatial 
resolution was set to 8 mm. Data reduction was performed by 
applying principal component analysis (PCA), utilizing the 
“Matlab Toolbox for Dimensionality Reduction” 
(http://ict.ewi.tudelft.nl/~lvandermaaten/Home.html).  

C. BrainAGE framework 
The age estimation model [20] was trained with 

preprocessed grey matter (GM) images of healthy subjects, 
aged 20–86 years, from the IXI cohort (www.brain-
development.org) by applying a high-dimensional learning 
machine, namely relevance vector regression (RVR) [2, 21] 
with a linear kernel. It was separately trained on male and 
female subjects, utilizing the freely available toolbox “The 
Spider” (www.kyb.mpg.de/bs/people/spider/main.html). 

Then, the individual brain ages of the test sample from 
the ADNI database were estimated. The difference between 
the estimated and the true age resulted in the brain age gap 
estimation (BrainAGE) score. Consequently, positive 
BrainAGE scores indicate accelerated brain aging. 

D. Statistical analysis 
The relationships between BrainAGE score and 

laboratory data was analyzed with the help of the 
multivariate linear regression model. To quantify the effects 
of the physiological and clinical chemistry parameters under 
consideration on the BrainAGE scores, the 1st quartile 

(lowest 25% of values) vs. 4th quartile (highest 25% of 
values) of each parameter was compared via t-tests. Using 
MATLAB, statistical testing was performed separately on 
males and females to account for gender-specific patterns. 

III. RESULTS 
The BrainAGE scores did not differ between males (0.0 ± 

8.4 years) and females (0.0 ± 7.5 years). Men and women did 
not differ with respect to albumin, aspartat-aminotransferase 
(AST), systolic (SBP) and diastolic blood pressure (DBP), 
body mass index (BMI), γ-glutamyltransferase (GGT), 
glucose, mean erythrocyte cell volume (MCV), thyroid 
stimulating hormone (TSH), and triglycerides. Men showed 
significantly higher parameter levels than women in alanin-
aminotransferase (ALT), total bilirubin, creatinine, tHcy, and 
uric acid, whereas women show significantly higher levels 
than men in cholesterol and vitamin B12. 

For men, when combining all measured physiological 
and clinical chemistry parameters by applying a multivariate 
regression model, 39% of variance within the BrainAGE 
score was attributed to the physiological and clinical 
chemistry parameters under consideration (R2=0.39, 
p<0.001). When quantifying the effects of health and 
lifestyle markers on BrainAGE, several significant 
differences were observed between the lowest (1st) vs. the 
highest (4th) quartile group of each physiological and clinical 
chemistry parameter (Table 1): for BMI, the absolute 
difference of the mean BrainAGE scores was 8.8 years; for 
DBP, the result was 7.1 years; GGT, 5.7 years; and for uric 
acid, 6.2 years. Combining these four parameters, the effects 
of “healthy” vs. “poor” lifestyle markers on BrainAGE were 
even accumulating, resulting in mean BrainAGE scores of -
8.09 vs. 6.79 years, respectively (p=0.015; Figure 2). Taken 
together, the results indicate a strong link between 
physiological and clinical health and lifestyle markers and 
acceleration in brain aging in men. 

For women, the multivariate regression model combining 
all measured parameters was capable of explaining 32% of 
BrainAGE variance (R2=0.32, p<0.01). Comparing the 

 
Figure 2. Box plots with BrainAGE scores of male subjects with 

markers of „healthy“ (values equal to or below the medians of BMI, 
DBP, GGT, and uric acid; n=9) vs. „poor“ lifestyle (values equal to or 
above the medians of BMI, DBP, GGT, and uric acid; n=14; p<0.05).  
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TABLE II.  COMPARISON OF BRAINAGE SCORES BETWEEN 1ST QUARTILE  
VS. 4TH QUARTILE GROUPS WITHIN THE FEMALE SAMPLE 

Mean BrainAGE score Female Sample 
(n=104) 1st  4th  p-value 

Albumin (g/dl) 0.55 -1.21 n.s. 
ALT (U/l) -2.88 2.29 0.0085 
AST (U/l) -1.67 2.57 0.0426 
Total Bilirubin (mg/dl) -2.54 1.26 n.s. 
SBP (mmHg) -1.31 0.35 n.s. 
DBP (mmHg) -1.50 2.20 n.s. 
BMI (kg/m2) -0.77 2.08 n.s. 
Cholesterol (mg/dl) 1.71 0.26 n.s. 
Creatinine (mg/dl) -0.92 0.37 n.s. 
GGT (U/l)  -3.88 2.18 0.0056 
Glucose (mg/dl) -0.45 1.81 n.s. 
MCV (fL) 2.67 -3.02 0.0074 
TSH (µIU/mL) 0.55 -0.92 n.s. 
tHcy (µmol/l)  -1.41 1.04 n.s. 
Triglycerides (mg/dl) 0.43 -0.71 n.s. 
Uric Acid (mg/dl) -3.63 1.25 0.0188 
Vitamin B12 (ng/l)  1.80 -3.07 0.0249 

Abbreviations: ALT, alanin-aminotransferase; AST, aspartat-
aminotransferase; BMI, body mass index; DBP, diastolic blood pressure; 
GGT, γ -glutamyltransferase; MCV, mean erythrocyte cell volume; SBP, 
systolic blood pressure; TSH, thyroid stimulating hormone; tHcy, total 
homocysteine; n.s. = not significant 

lowest quartile with the highest quartile of each physiological 
and clinical chemistry parameter in female individuals, a 
different pattern of significant differences was observed 
(Table 2). For GGT, the absolute difference of the mean 
BrainAGE scores was 6.1 years; for ALT, it resulted in 5.2 
years; for AST, 4.2 years; and for uric acid, 4.9 years. For 
MCV and B12, higher levels were associated to negative 
BrainAGE scores (MCV: 5.7 years; B12: 4.9 years). 
Combining these parameters, the effects of “healthy” vs. 
“risky” lifestyle markers on brain aging observed in women 
were also accumulating, resulting in mean BrainAGE scores 
of -3.47 vs. 7.42 years, respectively (p=0.006; Figure 3). 
Again, these results indicate a significant link between 
physiological and clinical health markers and pathological 
brain aging in women. 

IV. DISCUSSION 
The scope of this study was the implementation of a 

novel MRI-based biomarker based on the recently presented 
BrainAGE framework [20] to quantify the effect of several 
common physiological and clinical health and lifestyle 
markers on individual brain aging. Using structural MRI 
data, the fully automated age estimation model aggregates 
the complex, multidimensional aging patterns across the 
whole brain to one single value (i.e. the BrainAGE score) and 
finally identifies pathological brain aging on an individual 
level. This method already showed the advantage of 
accurately and reliably estimating the age of the brain with 
minimal preprocessing and parameter optimization [1, 20], 
using a single anatomical scan. Regarding the relevance 
within the clinical context, higher BrainAGE scores were 
recently demonstrated to be closely related to measures of 
clinical disease severity in AD patients, as well as 

prospective worsening of cognitive functioning in subjects 
who converted to AD [1].  

The present study with healthy elderly subjects provides 
evidence that a number of environmental and in particular 
nutrition- or lifestyle-related factors and health parameters 
have a significant effect on brain aging, hence likely 
affecting the onset of dementia in healthy humans. The set of 
serum markers under consideration could explain 39% of 
variance in BrainAGE in men and 32% in women. 

In males, components of the metabolic syndrome, i.e., 
elevated values in BMI, DBP, and uric acid, as well as 
markers of alcohol abuse, i.e., elevated GGT and uric acid, 
were significantly associated with an increased BrainAGE 
score of nearly 9 years. Furthermore, when combining the 
observed risk parameters, the effects on brain aging were 
even accumulating. This is consistent with previous studies 
that associated lower total brain volume as well as an 
increased risk of later dementia with a higher BMI and [12] 
the metabolic syndrome [13].  

In females a different pattern was found. In particular, 
markers of liver and kidney functions, i.e., GGT, ALT, AST, 
and uric acid, were significantly related to BrainAGE scores. 
Furthermore, female subjects with a sufficient supply of 
vitamin B12 and possibly iron, as indicated by low MCV 
values, showed lower BrainAGE scores, suggesting a 
protective effect of these nutrients on brain aging. As already 
observed in the male sample, the effects on accelerated brain 
aging were accumulating, when combining the female-
specific risk parameters. These results are consistent with 
recent studies that also found gender-specific relationships 
between lifestyle-related health markers and GM atrophy 
[22] or even risk for AD [12]. 

Because this study was cross-sectional, it remains unclear 
whether health and lifestyle factors represent cause or 
consequence of the associations found. Nevertheless, it 
strongly supports previously published results relating 
overall health with brain structure. Further research is needed 

 
Figure 3. Box plots with BrainAGE scores of female subjects with 

markers of  „healthy“ (values equal to or below the medians of GGT, 
ALT, AST, uric acid, and values equal to or above the medians of 

MCV and B12; n=5) vs. „poor“ lifestyle (values equal to or above the 
medians of GGT, ALT, AST, uric acid, and values equal to or below 

the medians of MCV and B12; n=6; p<0.01).  
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to quantify the gender-specific relation between individual 
brain aging and miscellaneous risk factors (i.e. genetic 
effects, cognitive development, personal health markers, and 
modifiable lifestyle factors) in larger samples. Furthermore, 
it should be explored how the duration of exposure to risk 
factors affects the risk of accelerated brain aging and 
dementia in higher age, and how changes in nutrition and 
lifestyle could decrease that risk.  

Taken together, accelerated brain aging in healthy elderly 
subjects is related to several markers of impaired health or 
inappropriate lifestyle, whereas a protective effect on brain 
aging is observed for markers of good health, including a 
healthy lifestyle. Since accelerated brain atrophy was shown 
to precede cognitive impairment in AD [8, 9], this study 
suggests that a healthy lifestyle can prevent or at least slow 
down brain aging. However, gender-specific mechanisms 
should be taken care of in future studies. 
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