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TABLE I.  CHARACTERISTICS OF THE RODENT SAMPLE 

Time point of MR scanning (number of day after birth) 

97 104 118 146 174 258 342 426 510 594 678 762 846 

No. MRI scans  24 24 24 24 24 24 23 23 23 23 20 9 8 

MAE of brain 
age (days) 

37 26 28 20 23 39 49 54 56 61 72 155 185 

RMSE of brain 
age (days) 

44 32 32 26 29 48 58 64 69 82 92 171 199 
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Abstract—This work presents two novel species-specific adap-
tations of a MRI based biomarker that indicates individual 
deviations from normal brain aging trajectories for rodents 
and non-human primates. By employing automatic, species-
specific preprocessing of anatomical brain MRI as well as high-
dimensional pattern recognition methods, this approach uses 
the distribution of healthy brain-aging patterns to estimate 
individual brain ages. This biomarker may probably enable 
tracking the effects of developmental and environmental influ-
ences, manipulations, and (preventive) treatments on individ-
ual deviations from species-specific brain aging trajectories in 
experimental mammal models across the life-course. 
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I.  INTRODUCTION 
With the use of magnetic resonance imaging (MRI), 

cross-sectional as well as longitudinal neuroimaging studies 
are contributing to a better understanding of healthy as well 
as pathological neuroanatomical changes across the lifespan. 
Though neuroanatomical maturation and aging is character-
ized by a widespread but rather specific pattern of progres-
sive and regressive alterations [1, 2], multiple factors affect 
and modify those individual trajectories. To study and quan-
tify those individual deviations in humans, several MRI-
based biomarkers using pattern recognition techniques were 
recently developed [3-6]. Applying those biomarkers, a big 
variety of factors were already found to be related to individ-
ual deviations from healthy brain aging in humans, e.g. sev-
eral health and lifestyle factors [7]. However, experimental 
animal studies are mandatory to study the individual causes 
of deviations from healthy brain aging and to quantify their 
impact on individual brain aging trajectories. Therefore, 
species-specific MRI-based biomarkers for brain aging are 
needed to model brain aging and to indicate individual devia-
tions from healthy brain aging trajectories in experimental 
studies with mammals.  

Based on our well-established pattern recognition frame-
work for individual brain aging in humans [3, 7, 8], this 
study presents two species-specific adaptations of the Brain-
AGE approach for non-human primates (baboons) and ro-
dents (rats), including novel species-specific preprocessing 
pipelines for anatomical MRI data. Additionally, the study 
includes longitudinal analyses of individual brain aging tra-
jectories in rodents.  

II. METHODS
A. Samples 

1) Non-human primates
The sample of non-human primates included 29 [14 

male] healthy control subjects (Papio hamadryas), aged 4–22 
years [mean 9.5±4.9y]. Each subject was scanned once on a 
3T whole body scanner (TIM Trio, Siemens Medical Solu-
tions, Malvern, PA) using a T1-weighted sequence. All ani-
mal procedures were performed in accordance with accepted 
standards of humane animal care approved by the Texas 
Biomedical Research Institute and University of Texas 
Health Science Center at San Antonio Institutional Animal 
Care and Use Committee and conducted in facilities ap-
proved by Association for Assessment and Accreditation of 
Laboratory Animal Care International Inc. 

2) Rodents
The sample of rodents included 24 control subjects with-

out any treatments. Mean life span was 734± 110 days. Sub-
jects were scanned up to 13 times on a clinical 3T whole 
body Scanner (Magnetom TIM Trio, Siemens Medical Solu-
tions, Erlangen, Germany), with rats being anesthetized dur-
ing scanning session. In total, the sample included 273 MRI 
data sets (Table 1). A dedicated rat head coil with a linearly 
polarized Litz coil volume resonator design (Doty Scientific 
Inc., Columbia, SC, USA) was used in order to acquire T2-
weighted images with an isotropic voxel size of 0.33 mm 
(matrix 192×130×96, FoV 64×43×32 mm, bandwidth 145 
Hz/px, TE/TR = 352 ms/2500 ms, flip angle mode ‘T2var’, 
echo spacing of 10.7ms, turbo factor of 67 and Partial Fou-
rier of 7/8 in both phase encode directions).  

B. Basic concept of the brain age estimation framework 
The brain age estimation framework (BrainAGE) was de-

veloped to model healthy brain aging in humans [3]. Its basic 
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concept is the aggregation of the complex, multi-dimensional 
aging pattern across the whole brain into one single value, 
i.e. the estimated brain age. In human samples, the Brain-
AGE framework has been shown to accurately and reliably 
estimate the age of individual brains using structural MRI 
with minimal preprocessing and parameter optimization and 
also proved its potential to identify pathological brain aging 
on an individual level [3, 8].  

In general, the workflow includes three steps (Fig. 1). 
First, the raw structural MRI data are preprocessed with a 
standardized voxel-based morphometry (VBM) pipeline in 
order to make them comparable and processable for the fol-
lowing analysis steps. Second, data reduction is performed 
via principal component analysis (PCA) on the preprocessed 
MRI data in order to reduce computational costs, to avoid 
severe overfitting, as well as to get a robust and widely ap-
plicable age estimation model. PCA is performed on the 
training data only and resulting transformation parameters 
are subsequently applied to the test sample. Third, relevance 
vector regression [RVR; 9] is utilized to capture the multidi-
mensional aging patterns across the whole brain in order to 
model brain aging over a wide age range and to subsequently 
estimate individual brain ages.  

In the present study, the original brain age estimation 
framework was adapted to build species-specific brain aging 
models for non-human primates and rodents, including 
newly developed species-specific preprocessing pipelines for 
anatomical MRI data. 

C. Preprocessing of MRI data 
1) Non-human primates

First, a slice-based inhomogeneity correction was used to 
remove MR protocol depending slice artifacts (Fig. 2a) [10, 
11]. Then, a spatial adaptive non-local means filter 
(SANLM) [12] was applied to reduce high-frequency noise. 
For segmentation and spatial registration a baboon tissue 
probability map (TPM) and a Dartel template were required. 
The template was created in an iterative process based on a 
rescaled human template (Fig. 2b). For initialization, an 
affine transformation was used to scale the human SPM12 
TPM and the CAT12 Dartel template map to the expected 

brain size of baboons (i.e., ∼140ml vs.
∼1400ml in humans). Image resolution
of the template was changed to 
isotropic voxel size of 0.75mm. For 
each iteration step, the resulting tissue 
maps were averaged and smoothed 

with a full-width-at-half-maximum (FWHM) kernel of 2mm 
to estimate an affine registration in order to create a new 
TPM, T1 average map and brainmask. For averaging data, 
the median function was used to reduce distortions by out-
liers and failed processing. Iterations were stopped if the 
change compared to the previous template was below a pre-
defined threshold, resulting in final segmentation (Fig. 2c).  

2) Rodents
To automatically preprocess and analyze MRI of rats, a 

preprocessing framework including several realignment and 
normalization steps was utilized, providing analysis in the 
space of Paxinos atlas [13]. First, an initial affine co-
registration to the Paxinos template using normalized mutual 
information was applied. In the next step all time points of 
one data set were registered to the baseline scan and defor-
mations between all time points and the baseline were esti-
mated. This deformation based morphometry (DBM) 
approach is a useful technique to detect structural differences 
over the entire brain since it analyzes positional differences 
between every voxel and a reference brain. After this non-
linear registration, the morphological differences between 
both brains are minimized and the deformations now encode 
information about these differences. The Jacobian determi-
nant can be finally used to calculate local volume changes at 
every voxel.  

D. Data reduction 
1) Non-human primates

Preprocessed MRI data were smoothed with a 3mm 
FWHM smoothing kernel. Images were resampled to 3mm.  

2) Rodents
After species-specific MRI preprocessing, the resulting 

Jacobians in each voxel were filtered with a smoothing ker-
nel comparable to a 4mm FWHM smoothing kernel normally 
used for human data.  

E. Species-specific brain age estimation framework 
The brain age estimation framework utilizes RVR with a 

linear kernel because of former results in human data indicat-
ing favorable performance of RVR to capture the typical age-

Figure 1. General flowchart of the brain age estimation framework. 

Figure 2. Preprocessing pipeline for baboon MRI. (a) Slice-based inhomogeneity correction was performed to remove MR protocol dependent slice
artifacts. (b) For segmentation and spatial registration, a baboon tissue probability map (TPM; shown as label map) was created in an iterative refine-

ment process based on a rescaled human template (left). (c) The final TPM was used for final segmentation of anatomical MRI.
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specific atrophy patterns across the whole brain. Addition-
ally, age estimation accuracy was not improving when 
choosing non-linear kernels [3]. Besides and in contrast to 
support vector machines, parameter optimization via cross-
validation during the training procedure is not necessary as 
this is automatically performed within the algorithm itself 
[9]. In general, the model is trained with preprocessed whole 
brain structural MRI data and corresponding chronological 
ages of a training sample, resulting in a complex model of 
brain aging. Put in other words, the algorithm uses those data 
sets from the training sample that represent the prototypical 
examples within the specified regression task (i.e., brain 
aging). Voxel-specific weights are calculated that represent 
the contribution of each voxel within the specified regression 
task (i.e., brain aging). Subsequently, the brain age of a new 
test subject can be calculated by applying the weights-vector 
to the individual preprocessed MRI data, aggregating the 
complex, multidimensional aging pattern across the whole 
brain into one single value. The difference between estimated 
brain age and chronological age reveals the individual devia-
tion score, namely the brain age gap estimation (BrainAGE) 
score. Consequently, positive or negative values of this de-
viation score directly quantify the amount of acceleration or 
delay in individual brain aging, respectively. 

1) Non-human primates 
For baboons, only the gray matter images are used to 

build the model of brain aging in baboons. The brain age 
estimation model was trained and tested via leave-one-out 
(LOO). PCA was repeatedly performed on the training data 
and subsequently applied to the test data before RVR inside 
each LOO loop. 

2) Rodents 
For rats, training and testing of the brain age estimation 

model was done performing subject-specific LOO. In detail, 
the brain age estimation model was trained performing RVR 
with the preprocessed whole brain structural MRI data from 
all scanning time points of 23 out of a total of 24 subjects to 
model the neuroanatomical aging process. Subsequently, the 
individual brain age at each scanning time point of the left-
out test subject was estimated using its corresponding MRI 
data. PCA was repeatedly performed on the training data and 
subsequently applied to the test data before RVR inside each 
LOO loop. The whole procedure was repeated 24 times.  

F. Technical notes  
The whole brain age estimation framework works fully 

automatically. All MRI preprocessing, data reduction, model 
training, and brain age estimation was done using MATLAB. 
For preprocessing the T1-weighted images SPM8 was used 
(www.fil.ion.ucl.ac.uk/spm), integrating our new CAT12 
toolbox (http://dbm.neuro.uni-jena.de). The ‘Matlab Toolbox 
for Dimensionality Reduction’ (http://ict.ewi.tudelft.nl/ 
~lvandermaaten/Home.html) was used for PCA. ‘The Spider’ 
(www.kyb.mpg.de/bs/people/spider/main.html) was used to 
perform RVR.  

Baboon TPM and template generation takes around 30 
minutes per subject and iteration, ending up in about 2 days 
for the whole sample. The full description of the TPM, tem-
plate and atlas generation process is actually prepared for a 

separate publication. For the sample including 29 baboons 
with one MRI data set per subject, the whole process of train-
ing the baboon-specific BrainAGE model and estimating the 
individual brain ages takes about 20 sec in total. Preprocess-
ing MRI data of the rodents takes about 10–15 min per MRI 
data set on MAC OS X, Version 10.6.3, 2.8 GHz Intel Core 2 
Duo. For the sample including 24 rats with up to 13 MRI 
data sets per subject, the whole process of training the ro-
dent-specific BrainAGE model and estimating the individual 
brain ages takes about 285 sec in total.  

G. Statistical analysis 
To measure the accuracy of the age estimation, the corre-

lation coefficient, mean absolute error (MAE), and root mean 
squared error (RMSE) between chronological age and esti-
mated brain age were calculated: 

 MAE = 1/n * ∑i |BAi – CAi|, (1) 
RMSE = [1/n * ∑i (BAi – CAi)2]1/2, (2) 

with n being the number of subjects in the test sample, BAi 
being the estimated brain age, and CAi being the chronologi-
cal age. F statistics of linear and quadratic regression models 
were used to analyze best-fit between BA and CA. Multi-
variate linear regression was used to analyze the individual 
brain aging trajectories over lifespan in rats. All statistical 
testing was performed using MATLAB.  

III. RESULTS 

A. Performance of the BrainAGE model in baboons 
With a correlation of r=0.80 (p<0.0001) to the chrono-

logical, estimation of brain ages from anatomical MRI scans 
in the baboon sample showed very good accuracy. MAE was 
2.1y, which equates to an age estimation error of 11% in 
relation to the age ranged used in this study. The linear re-
gression model showed the best fit between chronological 
and estimated age (R2=0.64; F=47.5; p<0.0001; Fig. 3) as 
compared to the quadratic fit (R2=0.64; F=23.0; p<0.0001).  

B. Performance of the BrainAGE model in rodents 
Brain age estimation was highly accurate in the sample of 

rats (r=0.95; p<0.0001). Mean MAE was 49d, which equates 

 
Figure 3: Chronological and estimated brain ages are shown for the 
sample of healthy control baboons, including the 95% confidence in-
terval (gray lines). Correlation between chronological and estimated 

brain age was r=0.80 (p < 0.0001). 
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to an age estimation error of 6% in relation to the age ranged 
used. Mean RMSE was 71d. Individual MAEs and RMSEs 
for each single scanning time point can be found in Table 1. 
The linear regression model showed a slightly better fit be-
tween chronological and estimated age (R2=0.91; F=2622.3; 
p<0.0001; Fig. 4a) than the quadratic fit (R2=0.91; F=1309.8; 
p<0.0001). Longitudinal analyses of individual brain aging 
trajectories showed more variance at old ages (Fig. 4b).  

IV. DISCUSSION 
For brain age estimation in mammals based on ana-

tomical brain MRIs, this study proposes species-specific 
adaptations of the fast and fully automatic brain age 
estimation framework originally developed for the use with 
human brain MRI data [3], including the development of 
new preprocessing pipelines for anatomical MRI data of 
rodents and non-human primates. Using about 270 MRI data, 
the rodent-specific BrainAGE method showed excellent per-
formances, explaining 91% of the individual variations in 
brain structures. As shown in the human BrainAGE study, 
the number of training subjects has the strongest influence on 
age prediction accuracy – above the choice of preprocessing 
method, regression kernel or pattern recognition algorithm 
[3]. With only 29 MRI data in the baboon sample, the 
baboon-specific brain age estimation framework showed 
very good performance, but will certainly improve when 
adding additional data. As already shown in human studies, 
several factors are influencing individual brain aging trajec-
tories [7]. Implementing these novel species-specific MRI-
based biomarkers for brain aging in mammals, future studies 
may probably track the effects of a variety of experimental 
manipulations on individual cerebral atrophy. In conclusion, 
the BrainAGE biomarker could potentially help to recognize 
and indicate a variety of environmental factors that cause 
advanced brain atrophy on an individual level in epidemio-
logical as well as experimental animal studies, thus finally 
contributing to a better understanding of healthy and 
pathological brain aging.  
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Figure 4. (a) Chronological and estimated brain age are shown for the sample of untreated control rats, including the 95% confidence interval (gray 

lines). The overall correlation between chronological and estimated brain age was r=0.95 (p < 0.0001).  (b) Longitudinal brain aging trajectories. 


