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Context: Identification of individuals at high risk of de-
veloping psychosis has relied on prodromal symptom-
atology. Recently, machine learning algorithms have been
successfully used for magnetic resonance imaging–
based diagnostic classification of neuropsychiatric pa-
tient populations.

Objective: To determine whether multivariate neuro-
anatomical pattern classification facilitates identifica-
tion of individuals in different at-risk mental states
(ARMS) of psychosis and enables the prediction of dis-
ease transition at the individual level.

Design: Multivariate neuroanatomical pattern classifi-
cation was performed on the structural magnetic reso-
nance imaging data of individuals in early or late ARMS
vs healthy controls (HCs). The predictive power of the
method was then evaluated by categorizing the baseline
imaging data of individuals with transition to psychosis
vs those without transition vs HCs after 4 years of clini-
cal follow-up. Classification generalizability was esti-
mated by cross-validation and by categorizing an inde-
pendent cohort of 45 new HCs.

Setting: Departments of Psychiatry and Psychotherapy,
Ludwig-Maximilians-University, Munich, Germany.

Participants: The first classification analysis included
20 early and 25 late at-risk individuals and 25 matched
HCs. The second analysis consisted of 15 individuals with
transition, 18 without transition, and 17 matched HCs.

Main Outcome Measures: Specificity, sensitivity, and
accuracy of classification.

Results: The 3-group, cross-validated classification ac-
curacies of the first analysis were 86% (HCs vs the rest),
91% (early at-risk individuals vs the rest), and 86% (late
at-risk individuals vs the rest). The accuracies in the sec-
ond analysis were 90% (HCs vs the rest), 88% (individu-
als with transition vs the rest), and 86% (individuals with-
out transition vs the rest). Independent HCs were correctly
classified in 96% (first analysis) and 93% (second analy-
sis) of cases.

Conclusions: Different ARMSs and their clinical out-
comes may be reliably identified on an individual basis
by assessing patterns of whole-brain neuroanatomical ab-
normalities. These patterns may serve as valuable bio-
markers for the clinician to guide early detection in the
prodromal phase of psychosis.
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T HE FIRST MANIFESTATION OF

psychosis constitutes the
most active disease phase,
affecting the individual at
both environmental and

neurobiological dimensions.1 Neuro-
toxic processes may underlie this disease
phase and may drive clinical deteriora-
tion, leading ultimately to the disabling,
chronic state of the disorder.2 Therefore,
the duration of untreated psychosis may
have a critical effect on the long-term clini-
cal outcome in terms of the responsive-
ness to medical treatment, frequency of
hospitalizations, and social and cognitive
functioning.3,4 Thus, the clinical focus has
increasingly shifted to the early recogni-
tion and treatment of individuals in an at-

risk mental state (ARMS) of psychosis to
postpone or even prevent the onset of the
disease.5-7

Early recognition relies on valid diag-
nostic markers that facilitate the detec-
tion of disease-related signals in hetero-
geneous, subclinical populations. In this
regard, clinical studies of individuals with
ARMS have identified patterns of subtle ex-
periential and behavioral abnormalities
consisting of affective and basic symp-
toms as well as attenuated psychotic symp-
toms, which are frequently paralleled by
deteriorating social functioning.8-11 Cur-
rently, the detection of individuals with
ARMS and the determination of the risk
of disease transition depends on this sub-
clinical symptomatology.

Author Affiliations:
Departments of Psychiatry and
Psychotherapy
(Drs Koutsouleris, Meisenzahl,
Bottlender, Frodl, Schmitt,
Zetzsche, and Möller and
Mss Scheuerecker and Decker)
and Radiology (Dr Reiser),
Ludwig-Maximilians-University,
Munich, Germany; Section of
Biomedical Image Analysis,
Department of Radiology,
University of Pennsylvania,
Philadelphia (Dr Davatzikos);
and Department of Psychiatry,
Friedrich-Schiller-University,
Jena, Germany (Dr Gaser).

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 66 (NO. 7), JULY 2009 WWW.ARCHGENPSYCHIATRY.COM
700

©2009 American Medical Association. All rights reserved.
 at WISSENSCHAFTLICHE BIBLIOTHEK, on July 8, 2009 www.archgenpsychiatry.comDownloaded from 

http://www.archgenpsychiatry.com


However, the overlap between prodromal symptoms and
psychopathological phenomena found in the general popu-
lation12,13 challenges the reliable delineation of the ARMS.
Thus, the low predictive validity of single prodromal symp-
toms limits their use as diagnostic markers for the pur-
pose of early recognition at the individual level.14 More-
over, the accurate detection of subtle clinical abnormalities
demands skilled personnel in highly specialized mental
health services. Therefore, suitable biological markers may
enhance the early recognition of emerging psychosis. In this
context, recent neuroimaging studies showed structural al-
terations in a number of brain regions, suggesting that the
prodromal state is associated with patterns of subtle gray
matter (GM) abnormalities within the temporal and fron-
tal cortices, the limbic system, and the cerebellum.15-21

The diagnostic utility of these alterations in the clini-
cal treatment of single individuals with ARMS is limited
because (1) the expression of structural abnormalities may
strongly depend on the individual neurobiological vul-
nerability and (2) neuroanatomical parameters derived
from group-level neuroimaging studies show a consid-
erable between-group overlap.22 These limitations may
be surmounted by a methodological shift to multivari-
ate machine learning techniques. In this context, sup-
port vector machines (SVMs)23 emerged as a powerful tool
in a wide range of biomedical applications because of their
ability to learn the categorization of complex, high-
dimensional training data and to generalize the learned
classification rules to unseen data.24 Recent studies dem-
onstrated the utility of SVMs in the neuroanatomical clas-
sification of Alzheimer disease and schizophrenia.25-29

Because SVMs have not been applied to the magnetic
resonance (MR) imaging–based diagnostic evaluation of
individuals with ARMS, we investigated their ability to de-
tect different ARMSs by performing a classification of
healthy controls (HCs) vs individuals with ARMS grouped
into “early” or “late” high-risk samples (ARMS-E or ARMS-
L). This 2-stage conceptualization of the ARMS30,31 has been
supported by recent neurocognitive, neurophysiological,
and structural brain findings.32-35 Furthermore, the SVMs’
performance in predicting disease transition was evalu-
ated in an ARMS subgroup having clinical follow-up in-
formation. This sample was divided into individuals with
and without disease transition (ARMS-T and ARMS-
NT), who were categorized relative to each other and to
HCs. The classifiers’ performance was evaluated by means
of 5-fold cross-validation and by classifying an indepen-
dent sample of HCs. We expected the individuals with
ARMS-L and ARMS-T to be classified with higher accu-
racy than those with ARMS-E and ARMS-NT.

METHODS

PARTICIPANTS

Forty-five individuals with ARMS (28 men and 17 women with
a mean [SD] age of 25.1 [5.8] years) were recruited at our Early
Detection and Intervention Centre for Mental Crises, Ludwig-
Maximilians-University. Potential individuals with ARMS were
referred to the center by primary health care services and were
examined according to a standardized inclusion criteria check-
list with operationalized definitions of different types of pro-

dromal symptoms: basic symptoms taken from the Bonn Scale
for Assessment of Prodromal Symptoms10 and attenuated psy-
chotic (APSs) and brief limited intermittent psychotic symp-
toms (BLIPSs) as defined by the Personal Assessment and Cri-
sis Evaluation (PACE) criteria.9 The recruitment protocol has
been detailed previously.15 In summary, potential individuals
with ARMS meeting defined sets of state and/or trait markers
were included in the study. Inclusion based on global func-
tioning and trait factors required a 30-point or greater reduc-
tion in the DSM-IV Global Assessment of Functioning Scale and
(1) a familial history of psychotic disorders in the first-degree
relatives or (2) a personal history of prenatal or perinatal com-
plications. Inclusion based on psychopathological state mark-
ers required at least 1 positive item in the basic symptom, APS,
or BLIPS categories of the inclusion criteria checklist follow-
ing specific time and duration criteria (Box).15,32,37

TheARMScohortwasdichotomizedaccordingtoa2-stagecon-
ceptualizationof theARMSdistinguishingbetweennonpsychotic
ARMS-E,withanincreasedriskofpsychosis,andpsychoticARMS-L,
with an imminent risk of full-blown psychosis.30,31 The ARMS-E
sampleconsistedof individualswithoutAPSsandBLIPSswhohad
had at least 1 basic symptom (Box) several times within the past
3 months, appearing first at least 12 months before study inclu-
sion, and/or who met a global functioning and trait criterion.
Following the PACE criteria,9,38 the ARMS-L sample comprised
individuals with at least 1 APS within the past 3 months, appear-
ing several times per week, and/or with at least 1 BLIPS, sponta-
neouslyresolvingwithin1week.Basicsymptomsand/orglobalfunc-
tioningandtraitmarkerswerenotexclusioncriteriaforthissample.
Inaddition,prodromalsymptomatologywasratedbymeansof the
Positive and Negative Syndrome Scale and Montgomery-Åsberg
Depression Rating Scale.39,40

Individuals with ARMS were regularly followed up for 4 years
to detect shifts toward a different ARMS or a transition to psy-
chosis.41 In individuals meeting the transition criteria, schizo-
phrenia spectrum disorders were diagnosed according to the In-
ternational Statistical Classification of Diseases, 10th Revision
diagnostic research criteria at the time of transition and after 1
year. Exclusion criteria were assessed by obtaining the personal
and familial history by means of a semistructured clinical inter-
view and involved (1) disease transition; (2) a past or present di-
agnosis of schizophrenia spectrum and bipolar disorders, as well
as delirium, dementia, amnestic or other cognitive disorders, men-
tal retardation, and psychiatric disorders due to a somatic factor,
following the DSM-IV criteria; (3) alcohol or drug abuse within
3 months before examination; (4) past or present inflammatory,
traumatic, or epileptic diseases of the central nervous system; and
(5) any previous treatment with antipsychotics.

For the first analysis (HC vs ARMS-E vs ARMS-L), we ran-
domly selected a sample of 25 HCs (HC1) from a previously
described group of 75 HCs15 to create a balanced design re-
garding group sizes. The HC1 group was matched groupwise
for age, handedness, and years of education to the ARMS-E and
ARMS-L samples. A second matched HC sample (HC2) was used
for the second analysis (HC vs ARMS-T vs ARMS-NT) by ran-
domly removing 8 subjects from HC1. Finally, 45 new HCs
(HCnew group) were recruited for the external validation of these
classification analyses. Any HCs with a past or present per-
sonal or familial history of neuropsychiatric conditions were
excluded from the study. All participants provided their writ-
ten informed consent before study inclusion. The study was
approved by the local research ethics committee.

MR IMAGING DATA ACQUISITION

The MR images were obtained on a 1.5-T system (Magnetom
Vision; Siemens, Erlangen, Germany). Imaging was per-
formed with a T1-weighted 3-dimensional magnetization pre-
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pared rapid-acquisition gradient echo sequence (repetition time,
11.6 milliseconds; echo time, 4.9 milliseconds; field of view,
230 mm; matrix, 512�512; 126 contiguous axial sections of
1.5-mm thickness; and voxel size, 0.45�0.45�1.5 mm).

MR IMAGING DATA PREPROCESSING
AND DIMENSIONALITY REDUCTION

After inspection for artifacts and gross abnormalities, the images
were segmented into GM, white matter, and cerebrospinal fluid
tissue maps in native space by means of the VBM5 toolbox (http:
//dbm.neuro.uni-jena.de), an extension of the SPM5 software
package (Wellcome Department of Cognitive Neurology, Lon-
don, England). Details of this segmentation protocol have been
described previously.15 The estimated tissue maps of each indi-
vidual were combined into a single volume with the values of
GM, white matter, and cerebrospinal fluid set to 150, 250, and
10, respectively. Then, an established high-dimensional normal-
ization algorithm42,43 registered these volumes to the single-
subject brain template of Montreal Neurological Institute. This
elastic warping algorithm compensates for the interindividual

anatomical variation by establishing point correspondences be-
tween cortical, subcortical, and ventricular structures, thus achiev-
ing a better alignment of corresponding anatomical regions than
the standard SPM5 normalization. The anatomical information
is encoded in the volumetric changes occurring during normal-
ization and is applied to the registered tissue maps, allowing for
a regional analysis of volumes in normalized space (RAVENS).
Similar to the “modulation” step used in voxel-based morphom-
etry,44 RAVENS maps allow for local comparisons in standard
space that are equivalent to volumetric comparisons of the origi-
nal tissue maps in native space.45 The individual GM-RAVENS
maps were proportionally scaled to the global GM volume com-
puted from the native tissue maps. The effects of age and sex were
removed from the data by calculating the partial correlations be-
tween these variables and the images.

We applied principal component analysis (PCA) to the
proportionally scaled, age- and sex-corrected GM-RAVENS
maps by projecting the number of correlated voxels to a
number of uncorrelated principal components (PCs).46,47

The PCA reduces (1) the computational complexity of clas-
sification caused by the high dimensionality of MR imaging

Box. Inclusion Criteria for Individuals in the ARMS Groupa

ARMS-E: Individuals With ARMS Without APSs and/or BLIPSs

1. Individuals had �1 of the following basic symptoms appearing within 12 months before study inclusion and several
times per week during the past 3 months:

• Thought interferences
• Thought perseveration
• Thought pressure
• Thought blockages
• Disturbances of receptive language, either heard or read
• Decreased ability to discriminate between ideas and perception, fantasy and true memories
• Unstable ideas of reference (subject-centrism)
• Derealization
• Visual perception disturbances
• Acoustic perception disturbances

and/or

2. Individuals showed a reduction in Global Assessment of Functioning Scale score (DSM-IV) of �30 points (within the
past year) combined with �1 of the following trait markers:

• First-degree relative with a lifetime diagnosis of schizophrenia or a schizophrenia spectrum disorder
• Prenatal or perinatal complications

ARMS-L: Individuals With ARMS With or Without Basic Symptoms,
With or Without Global Functioning and Trait Markers

1. Individuals had �1 of the following APSs within the past 3 months, appearing several times per week for a period of
�1 week:

• Ideas of reference
• Odd beliefs or magical thinking
• Unusual perceptual experiences
• Odd thinking and speech
• Suspiciousness or paranoid ideation

and/or

2. Individuals had �1 BLIPS, defined as the appearance of 1 of the following psychotic symptoms for �1 week (interval
between episodes �1 week), resolving spontaneously:

• Hallucinations
• Delusions
• Formal thought disorder
• Gross disorganized or catatonic behavior

Abbreviations: APSs, attenuated psychotic symptoms; ARMS, at-risk mental state; ARMS-E, early ARMS; ARMS-L, late
ARMS; BLIPSs, brief limited intermittent psychotic symptoms.

aAdapted from Häfner et al.36
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data and (2) the generalization error of classification by opti-
mizing the number of PCs for data projection, thus maxi-
mizing the degree of anatomical information while minimiz-
ing the impact of noise.47 This filtering effect of PCA
increases both sensitivity and specificity of multivariate pat-
tern recognition techniques compared with gaussian
smoothing, which improves sensitivity at the cost of ana-
tomical specificity.

The optimal PC number for data projection was determined
by the peak overall classification accuracy across the whole range
of possible PC numbers as defined by the respective population
size.47 Peak cross-validated classification accuracies were ob-
served at nPC=21/nPC=17 in the first/second SVM analysis. In ad-
dition, the effect of PCA on classification performance was evalu-
ated in the second SVM analysis by skipping the dimensionality
reduction step before classification (eTable 1 and eTable 2, http:
//www.archgenpsychiatry.com). Before the class membership of
the test subjects was predicted, the mapping parameters com-
puted for the PCA projection of the training data were applied to
the test data. The PCA was performed by means of the Dimen-
sionality Reduction Toolbox.48

SVM CLASSIFICATION

The SVMs are multivariate artificial learning algorithms ap-
plied recently to the MR imaging–based classification of neu-
ropsychiatric patient populations.26-29,46,49 They represent su-
pervised machine learning procedures in that they (1) learn about
group differences in a training data set categorized by some a
priori knowledge and (2) apply the learned model to the clas-
sification of new data.23,50,51

From the perspective of statistical learning theory, MR im-
ages can be regarded as points in a high-dimensional space. In
our case, the dimensionality of this space was determined by
the optimal number of uncorrelated PCs obtained by PCA. The
SVM analysis started with a nonlinear transformation from the
low-dimensional space of the individuals’ PC loadings to a high-
dimensional feature space. Nonlinear kernel transformations
may have important advantages over linear mappings because
they can handle classification problems with nonlinear rela-
tions between class labels and data instances (Figure 1A). We
used the radial basis functions kernel because it facilitates the
adaptive modeling of the interface between the classes and thus
significantly improves classification performance.52,53 Intu-
itively, the kernel matrix can be regarded as a similarity mea-
sure, meaning that data instances sharing similar features form
clusters within the feature space.

The SVMs implement the principle of structural risk mini-
mization23,50,51 to learn a classification rule that guarantees gen-
eralizability to unknown data instances, avoiding both model
overfitting and underfitting. Structural risk minimization is
achieved through large margin classification, which deter-
mines the optimal separating hyperplane (OSH) between the
training classes by maximizing the distance between the near-
est data instances of opposite classes (Figure 1B). These in-
stances are the support vectors because they show the smallest
distance to the OSH. Instances further away from the OSH do
not contribute to the discrimination. Thus, the algorithm fo-
cuses on subtle between-group differences and not on gross,
easily detectable anatomical features.

The OSH can be used to predict the class membership of new
data instances. For each new instance, the classifier produces an
output consisting of the predicted class membership and the de-
cision value measuring the distance of the new instance to the
OSH. These decision values were used for constructing multi-
class classifiers in which the class label with the maximum ab-
solute decision value across the 3 binary SVMs decided the class

membership (1-vs-1-by-maximum-wins method). We used the
LIBSVM software for our SVM analysis.54

Although the SVM classifiers used in our analysis are effec-
tive in detecting spatially complex and subtle patterns of neu-
roanatomical between-group differences, they are difficult to
visualize because of the nonlinearity of the classification
method.53 Discriminative neuroanatomical patterns were ap-
proximated by the following visualization technique: for all bi-
nary SVMs, the “nearest-neighbor” support vector pairs were
determined by selecting support vectors from opposite classes
that were separated by the smallest distance across the OSH.
Then, the difference vector for each of these nearest-neighbor
support vector pairs was calculated and the arithmetic mean
of all difference vectors was formed. Finally, the PCs com-
puted during the PCA procedure were weighted by the mean
difference vector and summed to reconstruct the discrimina-
tive volume in the original space of the GM-RAVENS maps. For
visualization purposes, the complexity of the discriminative pat-
terns was reduced by smoothing the volumes with an isotro-
pic gaussian kernel of 8 mm full width at half maximum. The
patterns of the 3 binary classifiers were overlaid on the Mon-
treal Neurological Institute single-subject anatomical tem-
plate by means of the software package MRIcron (http://www
.sph.sc.edu/comd/rorden/mricron/).

CLASSIFICATION PERFORMANCE

First, 5-fold cross-validation was performed to estimate the gen-
eralizability of the classification models.55 Therefore, the study
population was split into 5 nonoverlapping samples, and each

Radial basis functionsA

B

Figure 1. Schematic representation of nonlinear support vector machine
(SVM) classification (A) and large-margin classification (B). A, At left, 2 groups
of individuals (red and green shapes) cannot be separated in the input space
by a linear classifier because the relationship between the data instances and
their class labels is nonlinear (black circle). At right, With the use of radial
basis functions, the data can be mapped into a high-dimensional space where
the groups can be separated by means of linear classification. The shaded
shapes represent the support vectors that define the optimal separating
hyperplane (OSH) (yellow). B, At left, infinite separating boundaries (dotted
lines) may exist between 2 classes (red and green circles). At right, the SVM
algorithm determines the OSH by maximizing the margin between the nearest
data instances of opposite classes.
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of these was iteratively held back as test data while the classi-
fier was trained on the 4 remaining samples. In each iteration
the class membership of the test data instances, which were
unseen by the algorithm, was predicted by using the classifier
constructed from the training data. Five-fold cross-validation
provides a more conservative estimate of generalizability than
leave-1-out cross-validation,56 which iteratively predicts the class
membership of only 1 test case against the rest of the popula-
tion.28,56,57 See also eTable 3 and eTable 4. Sensitivity, specific-
ity, accuracy, false-positive rate, and positive (PPV) and nega-
tive predictive value (NPV) of cross-validation were computed
for all binary and multiclass classifiers. Then, permutation test-
ing was used to estimate the likelihood of obtaining classifica-
tion performance by chance, meaning that the discriminative
pattern between the data happened to correlate with the mem-
bership labels as an artifact of small sample sizes.58 Therefore,
the null distribution of the classification error was con-
structed for each classifier by performing 5000 random per-
mutations of the membership labels and applying 5-fold cross-
validation to each of these permutations. The null hypothesis
that the classifier did not predict the test cases’ class was re-
jected at �=.05. Finally, the external validity of both multi-
class classifiers was evaluated by predicting the class member-
ship of HCnew.

RESULTS

Table 1 and Table 2 summarize the sociodemo-
graphic, clinical, and global anatomical characteristics
of the study populations. No significant differences
with respect to age, sex, handedness, years of educa-
tion, and global brain volumes were found between
the HC and ARMS samples except for age, which dif-
fered significantly between ARMS-T and ARMS-NT
(Table 1). Reduced global functioning did not differ
between ARMS-E and ARMS-L, but all 15 individuals

in the ARMS-T group showed a reduction of 30 points
or more on the Global Assessment of Functioning
Scale at study inclusion compared with 56% in the
ARMS-NT sample (Table 2). The ARMS samples were
not significantly different with respect to the preva-
lence of psychosis in the first-degree relatives or pre-
natal and perinatal complications (Table 2).

No significant differences were detected between
ARMS-E and ARMS-L regarding Positive and Negative
Syndrome Scale and Montgomery-Åsberg Depression Rat-
ing Scale scores (Table 2). The ARMS-T group scored sig-
nificantly higher on the Positive and Negative Syn-
drome Scale positive symptoms score and showed a trend
toward a lower total Montgomery-Åsberg Depression Rat-
ing Scale score. The overall prevalence of cognitive ba-
sic symptoms (thought interference, thought persevera-
tion, thought pressure, and thought blockages) was higher
in the ARMS-L group than the ARMS-E group and in the
ARMS-T group relative to the ARMS-NT group. The
ARMS-T group showed a significantly higher preva-
lence of APSs and BLIPSs than the ARMS-NT group at
baseline (Table 2). In the ARMS-T sample, the mean time
to transition was 188 days (range, 35-777 days). Thir-
teen individuals developed psychosis during the first year
of follow-up, 1 person in the second year, and 1 person
in the third year.

NEUROANATOMICAL CLASSIFICATION

The permutation analysis showed that the classification
models produced by all binary and multiclass SVM clas-
sifiers of our study were significant at P� .001. See also
eTables 1 through 5.

Table 1. Statistical Analysis of Sociodemographic and Global Anatomical Parameters of Study Populationsa

Variable HC1 HC2 HCnew ARMS-E ARMS-L
P

Value ARMS-T ARMS-NT
P

Value

Sociodemographic variables
No. 25 17 45 20 25 15 18
Age at imaging, mean (SD), y 25.0 (5.5) 24.1 (4.8) 25.7 (4.1) 25.6 (5.7) 24.8 (6.0) .86b 25.9 (6.7) 22.4 (2.8) .07c

Sex, No. (%) .28d .90d

Male 19 (76) 11 (65) 29 (64) 10 (50) 18 (72) 11 (73) 11 (61)
Female 6 (24) 6 (35) 16 (36) 10 (50) 7 (28) 4 (27) 7 (39)

Handedness, No. (%)e .63d .40d

Right 21 (84) 14 (82) 40 (89) 17 (85) 22 (88) 15 (100) 14 (78)
Left 3 (12) 2 (12) 5 (11) 2 (10) 1 (4) 0 3 (17)
Ambidextrous 1 (4) 1 (6) 0 1 (5) 2 (8) 0 1 (6)

Education, mean (SD), y 12.1 (1.3) 12.1 (1.4) 12.5 (0.9) 12.3 (0.9) 11.8 (1.4) .07b 12.3 (1.0) 11.8 (1.2) .17b

Global anatomical volumes, mean (SD), mm3

GM 651.8 (88.7) 664.9 (95.9) 673.7 (56.7) 660.1 (62.7) 681.9 (78.4) .42b 653.7 (60.6) 698.0 (52.6) .27b

WM 523.9 (63.2) 530.2 (47.8) 543.4 (64.8) 527.7 (66.0) 531.0 (53.8) .59b 526.8 (63.0) 530.2 (47.8) .53b

CSF 456.8 (100.9) 446.5 (116.9) 470.1 (87.2) 446.5 (97.6) 475.2 (81.3) .69b 451.0 (97.6) 485.0 (97.8) .62b

VN 21.5 (9.3) 21.6 (9.7) 19.0 (9.0) 18.2 (6.2) 21.7 (10.0) .40b 18.9 (6.8) 28.1 (34.0) .26b

TI 1632.4 (215.6) 1630.2 (250.3) 1687.2 (163.4) 1634.2 (182.8) 1688.2 (156.4) .47b 1631.5 (177.8) 1713.1 (135.4) .41b

Abbreviations: ARMS, at-risk mental state; ARMS-E, early ARMS; ARMS-L, late ARMS; ARMS-NT, ARMS without disease transition; ARMS-T, ARMS with
disease transition; CSF, cerebrospinal fluid; GM, gray matter; HC1, healthy control group 1; HC2, healthy control group 2; HCnew, new healthy control group; TI, total
intracranial; VN, ventricular; WM, white matter.

aAnalyses of variance and t tests were performed for the sociodemographic and global anatomical variables either between HC1, HCnew, ARMS-E, and ARMS-L
samples or between HC2, HCnew, ARMS-T, and ARMS-NT samples. P values of all tests are 2-sided.

bBy 1-way analysis of variance.
cP=.03 in the post hoc analysis of ARMS-T vs ARMS-NT.
dBy �2 test.
eBecause of rounding, percentages may not total 100.
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HC vs ARMS-E vs ARMS-L

The overall accuracy of the 3-group classifier was 81%
(Table 3). Of 25 HC1 individuals, 3 individuals were
mislabeled as having ARMS-E and 2 as having ARMS-L
(sensitivity, specificity, and accuracy for HC1 vs the rest:
80%, 89%, and 86%, respectively). Two individuals with
ARMS-E were mislabeled as having ARMS-L (ARMS-E
vs the rest: 90%, 92%, and 91%, respectively). Of 25 in-
dividuals with ARMS-L, 5 were misclassified as being in
the HC1 group and 1 as having ARMS-E (ARMS-L vs the
rest: 76%, 91%, and 86%, respectively). Among the bi-
nary classifiers, the highest accuracy of 87% (sensitiv-
ity, specificity, PPV, and NPV: 95%, 80%, 79%, and 95%,
respectively) was observed for the classification of HC1

vs ARMS-E, followed by 82% (84%, 80%, 84%, and 80%,
respectively) for the ARMS-E vs ARMS-L classification
and 78% (76%, 80%, 79%, and 77%, respectively) for the
HC1 vs ARMS-L classification (Table 4).

ThediscriminativepatternunderlyingtheHC1vsARMS-E
classificationconsistedofGMvolumereductionswithinthe

cerebellum, thalamus, and prefrontal cortex bilaterally
(Figure 2A). Further bilateral reductions were found in
the medial occipital areas and precuneus, as well as in the
lateraltemporal lobe, includingthemiddleandsuperiortem-
poral gyrus and extending into the right supramarginal gy-
rus. Gray matter volume increments were detected within
the inferior temporal lobes and lateral parietal cortices bi-
laterally. The HC1 vs ARMS-L classifier relied on more ex-
tendedandpronouncedbilateralGMvolumereductions in
thecerebellum,precuneus,andsupplementarymotorareas,
includingthedorsomedialprefrontalcortexandanteriorcin-
gulate gyrus (Figure 2B). Further bilateral reductions were
identifiedwithinthebasalganglia,orbitofrontalcortex,me-
dial temporal lobes,andinsula,aswellas intheanteriorpor-
tionsofthesuperiortemporalgyrus.TheARMS-EvsARMS-L
classification involved bilateral GM volume reductions oc-
cupying theanteriorandposteriorportionsof thecingulate
gyrus, the posterior part of the superior and middle tempo-
ral gyriwithextensions into the inferiorparietal lobule, the
orbitofrontalandventrolateralprefrontalcortex,andthecer-
ebellum (Figure 2C).

Table 2. Clinical Parameters and Outcome of ARMS Samplesa

Variables ARMS ARMS-E ARMS-L P Value ARMS-T ARMS-NT P Value

Clinical Variables
Global functioning and trait markers, No. (%) of subjects

Family history of affective psychosis 5 (11.1) 3 (15.0) 2 (8.0) .64b 2 (13.3) 3 (16.7) �.99b

Family history of schizophrenic psychosis 6 (13.3) 2 (10.0) 4 (16.0) .68b 4 (26.7) 3 (16.7) .67b

GAF reduction �30% 32 (71.1) 13 (65.0) 19 (76.0) .52b 15 (100.0) 10 (55.6) .004b

Prenatal or perinatal complications 16 (35.6) 7 (35.0) 9 (36.0) �.99b 11 (73.3) 6 (33.3) .30b

Basic symptoms
Individuals with �1 item, No. (%) 41 (91.1) 19 (95.0) 22 (88.0) .62b 13 (86.7) 16 (88.9) .63b

Item count, mean (SD) 3.0 (2.2) 2.4 (1.6) 3.5 (2.4) .10c 3.3 (2.2) 2.4 (1.9) .20c

Attenuated psychotic symptoms
Individuals with �1 item, No. (%) 20 (44.4) 0 20 (80.0) . . . 12 (80.0) 5 (27.8) .005b

Item count, mean (SD) 0.9 (1.2) 0.0 (0.0) 1.6 (1.2) . . . 1.5 (1.0) 0.4 (0.7) �.001c

Brief limited intermittent psychotic symptoms
Individuals with �1 item, No. (%) 17 (37.8) 0 17 (68.0) . . . 8 (53.3) 4 (22.2) .08b

Item count, mean (SD) 1.0 (1.8) 0.0 (0.0) 1.8 (2.1) . . . 1.3 (1.4) 0.3 (0.8) .02c

Other psychopathology scores, mean (SD)
PANSS total score 54.4 (17.2) 50.2 (11.1) 56.6 (19.6) .96c 58.4 (22.1) 51.3 (11.2) .11c

PANSS positive score 10.8 (3.6) 9.3 (2.5) 11.7 (3.9) .06c 12.9 (4.5) 10.0 (2.4) .03
PANSS negative score 14.3 (7.6) 12.9 (5.7) 15.1 (8.5) .97c 16.3 (9.0) 12.9 (5.6) .06c

PANSS general score 29.2 (8.2) 28.0 (5.8) 29.9 (9.3) .48c 29.3 (11.1) 28.5 (6.2) .49c

MADRS score 15.7 (8.5) 15.6 (8.8) 15.7 (8.6) .27c 11.1 (8.1) 17.1 (7.2) .09c

Clinical Outcomes
Individuals with finished follow-up, No. 33 13 20
Dropouts/unfinished follow-up, No. 12 7 5
Individuals with ARMS-NT, No. 18 12 6

Individuals with negative inclusion criteria 5 5 0
Individuals meeting ARMS-E criteria 8 6 2
Individuals meeting ARMS-L criteria 5 1 4

Individuals with ARMS-T, No. (transition rate, %) 15 (45.5) 1 (7.7) 14 (70.0)
Duration of transition, mean (range), d 188 (35-777) 777 142.6 (35-645)

Diagnoses, No. of subjects
Schizophrenia 10 1 9
Schizoaffective disorder 4 0 4
Schizotypal disorder 1 0 1

Abbreviations: ARMS, at-risk mental state; ARMS-E, early ARMS; ARMS-L, late ARMS; ARMS-NT, ARMS without disease transition; ARMS-T, ARMS
with disease transition; ellipses, not applicable; GAF, Global Assessment of Functioning Scale; PANSS, Positive and Negative Syndrome Scale;
MADRS, Montgomery-Åsberg Depression Rating Scale.

aP values of all tests are 2-sided.
bBy Fisher exact test.
cBy t test.
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HC vs ARMS-T vs ARMS-NT

The overall accuracy of the 3-group classifier was 82%

(Table 3). Two of the 17 individuals in the HC2 group
were misclassified as having ARMS-T and 1 as having
ARMS-NT (sensitivity, specificity, and accuracy for HC2

Table 3. Three-Group Classification Performancea

HC vs ARMS-E vs ARMS-L HC vs ARMS-T vs ARMS-NT

Clinical Group

SVM Predicted Classes

Clinical Group

SVM Predicted Classes

HC1 ARMS-E ARMS-L HC2 ARMS-T ARMS-NT

Cross-validated SVM Performance
HC1, No. 20 3 2 HC2, No. 14 2 1
ARMS-E, No. 0 18 2 ARMS-T, No. 0 13 2
ARMS-L, No. 5 1 19 ARMS-NT, No. 2 2 14
Sensitivity, % 80 90 76 Sensitivity, % 82 87 78
Specificity, % 89 92 91 Specificity, % 94 89 91
Accuracy, % 86 91 86 Accuracy, % 90 88 86
FPR, % 11 8 9 FPR, % 6 11 9
PPV, % 80 82 83 PPV, % 88 77 82
NPV, % 89 96 87 NPV, % 91 94 88
Overall accuracy, % 81 Overall accuracy, % 82
Model significance P� .001 Model significance P� .001

SVM Performance in Prediction of HCnew

HCnew, No. 43 1 1 HCnew, No. 42 3 0

Specificity, %b 96 Specificity, % 93

Abbreviations: ARMS, at-risk mental state; ARMS-E, early ARMS; ARMS-L, late ARMS; ARMS-NT, ARMS without disease transition; ARMS-T, ARMS with
disease transition; FPR, false-positive rate; HC, healthy control; HC1, HC group 1; HC2, HC group 2; HCnew, new HC group; NPV, negative predictive value;
PPV, positive predictive value; SVM, support vector machine.

aThe multiclass SVM classifier was constructed by pairwise coupling of the binary SVM decision values obtained by 5-fold cross-validation. The class
membership of an individual was determined by the classifier with the maximum decision value among all binary SVM classifiers. Classification performance was
evaluated for 1 class against all other classes. The overall accuracy of the multiclass classifier was the proportion of all persons correctly classified by the
algorithm. Sensitivity, specificity, accuracy, FPR, PPV, and NPV were calculated from the confusion matrix containing the number of true-positives, false-negatives,
true-negatives, and false-positives. For example, 20 of 25 HC1 subjects (sensitivity, 80%) were correctly assigned to their group, while 40 of 45 individuals with
ARMS (89%) were correctly not labeled as HCs. Furthermore, the generalizability of classification was evaluated by classifying the independent HCnew sample. The
significance of multiclass classification was determined by 5000 random class label permutations.

bMeasures the capability of a predictive model (in this case, HC vs ARMS-E vs ARMS-L and HC vs ARMS-T vs ARMS-NT) to identify the true-negatives in a
population.

Table 4. Two-Group Classification Performancea

Binary Classifiers

Analysis 1b Analysis 2c

HC1 vs ARMS-E HC1 vs ARMS-L ARMS-E vs ARMS-L HC2 vs ARMS-T HC2 vs ARMS-NT ARMS-T vs ARMS-NT

TP 19 19 21 15 14 15
TN 20 20 16 15 16 12
FP 5 5 4 2 1 3
FN 1 6 4 0 4 3
Sensitivity, % 95 76 84 100 78 83
Specificity, % 80 80 80 88 94 80
Accuracy, % 87 78 82 94 86 82
FPR, % 20 20 20 12 6 20
PPV, % 79 79 84 88 93 83
NPV, % 95 77 80 100 80 80
P value �.001 �.001 �.001 �.001 �.001 �.001

Abbreviations: ARMS, at-risk mental state; ARMS-E, early ARMS; ARMS-L, late ARMS; ARMS-NT, ARMS without disease transition; ARMS-T, ARMS with
disease transition; FN, false-negative; FP, false-positive; FPR, false-positive rate; HC, healthy control; HC1, HC group 1; HC2, HC group 2; NPV, negative predictive
value; PPV, positive predictive value; TN, true-negative; TP, true-positive.

aThe performance of the binary classification models was computed by means of 5-fold cross-validation. Sensitivity, specificity, accuracy, FPR, PPV, and NPV
were calculated from the confusion matrix containing the number of TPs, FNs, TNs, and FPs. The significance of each binary classification was determined by
5000 random class label permutations.

bNeuroanatomical support vector machine analysis: 25 HCs vs 20 individuals with ARMS-E vs 25 individuals with ARMS-L.
cNeuroanatomical support vector machine analysis: 17 HCs vs 15 individuals with ARMS-T vs 18 individuals with ARMS-NT.
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vs the rest: 82%, 94%, and 90%, respectively). Two in-
dividuals with ARMS-T were wrongly assigned to the

ARMS-NT group (ARMS-T vs the rest: 87%, 89%, and
88%, respectively). Of the 18 individuals with ARMS-NT,

A

B

C

0.05 0.12 0.20 0.10 0.17 0.25

0.05 0.12 0.20 0.35 0.42 0.50

0.05 0.12 0.20 0.08 0.09 0.10

Figure 2. Discriminative patterns of the healthy control group 1 (HC1) vs at-risk mental state, early (ARMS-E) vs at-risk mental state, late (ARMS-L) classification
analysis. See the “Methods” section for an explanation of the visualization technique. Warm and cool colors represent volumetric reductions and increments,
respectively, in the second vs the first group of the binary classifier. The units are gray matter volume residuals (after removing the effects of age and sex by
means of partial correlation analysis and after scaling to a range of [−1, 1]). The gray matter volume reduction scales differed between HC1 vs ARMS-E (A), HC1 vs
ARMS-L (B), and ARMS-E vs ARMS-L (C), with the largest effects being observed in the HC1 vs ARMS-L classifier and the most subtle differences being present
in the discriminative pattern of ARMS-E vs ARMS-L.

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 66 (NO. 7), JULY 2009 WWW.ARCHGENPSYCHIATRY.COM
707

©2009 American Medical Association. All rights reserved.
 at WISSENSCHAFTLICHE BIBLIOTHEK, on July 8, 2009 www.archgenpsychiatry.comDownloaded from 

http://www.archgenpsychiatry.com


2 individuals were mislabeled as being in the HC2 group
and 2 as having ARMS-T (ARMS-NT vs the rest: 78%,
91%, and 86%, respectively). The binary classification of
HC2 vs ARMS-T attained the highest performance (ac-
curacy, sensitivity, specificity, PPV, and NPV: 94%, 100%,
88%, 88%, and 100%, respectively), followed by the clas-
sification of HC2 vs ARMS-NT (86%, 78%, 94%, 93%, and
80%, respectively) and ARMS-T vs ARMS-NT (82%, 83%,
80%, 83%, and 80%, respectively) (Table 4). In our ad-
ditional analysis of the effect of dimensionality reduc-
tion on classification performance, we obtained signifi-
cantly lower classification accuracies (HC2 vs ARMS-T,
75%; HC2 vs ARMS-NT, 51%; ARMS-T vs ARMS-NT, 70%;
and 3-group classification, 60%) (eTables 1 and 2).

The HC2 vs ARMS-NT and HC2 vs ARMS-T classifi-
cations relied on similar GM volume reduction patterns
occupying the anterior and posterior cingulate cortex; the
orbitofrontal, lateral prefrontal, and inferior temporal cor-
tex; and the medial temporal lobe and caudate nuclei bi-
laterally (Figure 3A and B). The discriminative pattern
of HC2 vs ARMS-T was more extended compared with
HC2 vs ARMS-NT. Finally, the ARMS-NT vs ARMS-T clas-
sifier detected a pattern of GM volume reductions in-
volving the medial, lateral, and inferior temporal corti-
ces, as well as the lateral prefrontal areas, the thalamus,
and the cerebellum (Figure 3C).

COMMENT

To our knowledge, this is the first study to evaluate the
feasibility of early recognition and disease prediction in
individuals with ARMS by using multivariate neuroana-
tomical pattern classification. We were able to distin-
guish individuals with ARMS from HCs and to detect their
ARMS with high diagnostic accuracy by relying solely on
structural between-group differences. Furthermore, our
study provided evidence that SVMs could be developed
to predict transition to psychosis.

Our method’s performance is comparable to that of
previous neuroimaging studies that used SVMs for the di-
agnostic classification of Alzheimer disease, frontotem-
poral degeneration, and mild cognitive impairment.26,28,49

Furthermore,MRimaging–basedSVMshavebeensuccess-
fullyappliedtothecategorizationofschizophrenicpatients29

and their healthy relatives.27 These studies demonstrate
that MR imaging–based SVMs reliably separate different
nosological populations at the individual level, suggest-
ing good performance also in subclinical conditions.

BIOMARKERS OF ARMS-E AND ARMS-L

In our first SVM analysis (HC1 vs ARMS-E vs ARMS-L),
we observed a high cross-validated classification perfor-
mance with the use of 2- and 3-group classifiers. The
individuals with ARMS-L were recruited according to
established ultrahigh-risk criteria (UHR), which were
sensitive to an imminent risk of disease transi-
tion.7,8,38,41,59 In this context, the cross-sectional and lon-
gitudinal clinical data of the ARMS-L sample (Table 1)
were comparable to those of other UHR popula-
tions.7,8,38,41,59 The high diagnostic accuracy of the

ARMS-L classifier suggests that structural patterns
involving prefrontal, orbitofrontal, perisylvian, limbic,
and cerebellar abnormalities may be associated with an
imminent risk of full-blown psychosis in keeping with
the results of previous investigations.15-19,21,60 These
studies showed that (1) UHR individuals show subtle
structural brain abnormalities in similar brain regions
as in patients with manifest schizophrenia and (2) sub-
sequent conversion to psychosis may be associated with
spatially more extended alterations at baseline and fur-
ther progressive abnormalities during disease transition.
Within this framework, our results suggest that neuro-
anatomical biomarkers of the UHR state could be inte-
grated in future high-risk studies, as recently proposed.8

Contrary to our initial expectations, the individuals in
the ARMS-E group were correctly assigned to their clini-
cal group with an even higher accuracy, which may be ow-
ing to greater clinical heterogeneity of ARMS-L individu-
als caused by a significantly higher rate of disease transitions.
Common psychopathological criteria are generally not sen-
sitive to the early prodromal state because it largely over-
laps with depressive syndromes61 and nonspecific psycho-
pathological phenomena found in the general population.12

However, Klosterkötter et al10 found a conversion rate of
nearly 50% in 160 individuals with ARMS selected for an
early prodromal state by the presence of perceptual-
cognitive “basic symptoms.”62 In contrast, our ARMS-E con-
version rate was 5.6%, although 10 highly predictive basic
symptoms had been used as intake criteria (Box). This in-
consistency may be due to our relatively small ARMS-E
sample and the significantly shorter follow-up period. Re-
cent findings suggest that different types of prodromes may
exist, with 33% of the converters having prodromal phases
lasting more than 6 years.63

Because of the low conversion rate of our ARMS-E
sample, we do not know whether MR imaging–based SVMs
would facilitate the prediction of a later disease transition
in a putatively early prodromal stage of psychosis. There-
fore, ARMS-E may rather be conceptualized as a precursor
of psychosis64 that is marked by increased disease vulner-
ability but that does not necessarily lead to a subsequent
disease manifestation. Previous MR imaging studies of ge-
netically defined at-risk individuals reported brain abnor-
malities in limbic and paralimbic structures17,18,21,65 and in
temporal and cerebellar regions.17 Nonpsychotic sub-
groups within these populations may have similar abnor-
malities, albeit not to the extent found in individuals with
ARMS-L.17,66 The discriminative features used by the HC1

vs ARMS-E classifier were consistent with these findings,
but alterations of prefrontal, occipital, and thalamic struc-
tures may have additionally contributed to the good sepa-
rability of ARMS-E. Our results suggest that subtle neuro-
anatomical abnormalities may underlie elevated disease
vulnerability, potentially providing a valuable biomarker
for the early precursors of psychosis.

PREDICTORS OF DISEASE TRANSITION

Our second analysis showed that SVMs are capable of dis-
tinguishing between ARMS-T and ARMS-NT individu-
als based on patterns of structural abnormalities present
before the onset of psychosis. Lateral and medial tem-
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poral abnormalities were found to separate converters
from nonconverters, in keeping with previous voxel-
based morphometric studies, which repeatedly showed
that disease transition was associated with abnormali-
ties of the perisylvian brain regions, the limbic and

paralimbic areas, and the anterior cingulate cortex at base-
line19 and over time.16,17,19,60

To date, only 1 study evaluated the feasibility of MR
imaging–based psychosis prediction in a genetically de-
fined ARMS population.67 The authors found that lon-
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C

0.05 0.10 0.15 0.05 0.10 0.15

0.05 0.10 0.15 0.05 0.10 0.15

0.05 0.10 0.15 0.05 0.10 0.15

Figure 3. Discriminative patterns of the healthy control group 2 (HC2) vs at-risk mental state (ARMS) with disease transition (ARMS-T) vs ARMS without disease
transition (ARMS-NT) classification analysis. A, HC2 vs ARMS-T. B, HC2 vs ARMS-NT. C, ARMS-T vs ARMS-NT. See the “Methods” section for an explanation of the
visualization technique. Warm and cool colors represent volumetric reductions and increments, respectively, in the second vs the first group of the binary classifier.
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gitudinal GM density reductions in the inferior tempo-
ral gyrus predicted subsequent disease manifestation with
a PPV of 60% and an NPV of 92%. These findings are not
comparable to those of our study because the authors in-
vestigated longitudinal alterations in 3 regions of inter-
est by using a univariate statistical procedure. Consis-
tent with previous studies,26,28,29 the high discriminative
power of our classification method indicates that multi-
variate whole-brain techniques have significant advan-
tages over region-of-interest methods because they cap-
ture the correlatedness of morphological features across
the entire brain. Furthermore, our tool may be more suit-
able for clinical applications because follow-up images
are not needed, thus allowing for a rapid assessment of
at-risk individuals. This is crucial for early recognition
because the current UHR criteria may be most sensitive
to an imminent risk of disease transition.8

Our results suggest that neuroanatomical pattern
recognition techniques may add further diagnostic reli-
ability to multivariate algorithms8,9 using clinical data
for early recognition and disease prediction. In this
regard, the high sensitivity observed in our classifica-
tion analyses may compensate for the lower levels of
sensitivity observed in the recently proposed clinical
Cox regression models.8,9 Furthermore, MR imaging–
based diagnostic techniques may be more widely appli-
cable because they (1) do not depend on highly special-
ized mental health services, (2) do not rely on unstable
clinical measurements, and (3) potentially are not con-
fined to ARMS populations that can be segregated by
means of multivariate patterns of clinical data, meaning
that these individuals are already considerably ill at
clinical examination. Nevertheless, the operationalized
psychopathological criteria underlying our ARMS-L
definition facilitated the recruitment of a sample with
70% subsequent disease transitions.

The high accuracy of our classification technique was
obtained by 5-fold cross-validation, which provides a con-
servative measure of generalizability because it itera-
tively tests an independent one-fifth of the population
against the rest of the data. This is further supported by
the reliable classification of HCnew subjects. Both valida-
tion methods suggest that the early detection of indi-
viduals in different ARMSs of psychosis and the segre-
gation of at-risk individuals who can expect a highly
probable future disease manifestation could be achieved
by SVM-based neurodiagnostic tools. However, this prom-
ising perspective does not imply that an individual ad-
mitted to the clinic with an ARMS-like pattern of psy-
chopathological symptoms could be diagnosed with an
equally high level of accuracy. This is because we used
classifiers trained solely to categorize HCs and different
ARMSs of psychosis as well as to predict a subsequent
disease manifestation. It is unknown how strongly neu-
roanatomical “signatures” of other psychiatric disor-
ders such as depression, bipolar disorder, or obsessive-
compulsive disorder overlap with the discriminative
patterns observed in different ARMSs of psychosis. There-
fore, cross-nosological multigroup classifiers based on an
SVM “library”28 of different neuropsychiatric disorders
and their prodromal stages may help to reliably differ-
entiate the ARMS from other conditions.

Finally, further limitations have to be considered. First,
an independent replication of our results is needed in
larger ARMS populations. Second, our method may not
be applicable as a general population screening proce-
dure because we examined help-seeking individuals who
overwhelmingly showed subclinical symptoms to a cer-
tain degree. Thus, it is unknown whether the method
could distinguish completely asymptomatic, genetically
defined high-risk individuals from HCs. Furthermore, it
is unclear whether the method can be generalized across
different MR imaging equipment. A recent study showed
that SVMs reliably classified patients with Alzheimer dis-
ease even if training and test data were acquired from dif-
ferent imagers.28 However, imager-induced noise will
probably have a greater effect on the generalizability of
the subtle neuroanatomical patterns underlying the
ARMSs of psychosis.

In summary, our results suggest that SVM-based neu-
roanatomical pattern recognition techniques may sub-
stantially improve early-detection approaches that cur-
rently depend entirely on clinical information. Future
projects may examine whether multimodal diagnostic
tools integrating clinical, neuropsychological, neuroana-
tomical, and genetic markers could detect the ARMSs of
psychosis and predict disease transition to a level of ac-
curacy allowing for the preventive treatment of the dis-
order.
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Correction

Error in Results. In the Original Article by Barker et al
titled “Developmental Trajectories of Male Physical
Violence and Theft: Relations to Neurocognitive Perfor-
mance,” published in the May 2007 issue of the Archives
(2007;64[5]:592-599), a computation error affected the
conclusions drawn about the relationship between neu-
rocognition and theft. The original conclusion stated in
the “Results” section of the Abstract was that “Execu-
tive function and verbal IQ performance were nega-
tively related to high frequency of physical violence but
positively related to high frequency of theft.” The sen-
tence should have read “Executive function and verbal
IQ performance were negatively related to high fre-
quency of physical violence but were unrelated to theft.”
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