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Background: The at-risk mental state for psychosis (ARMS) has been associated with abnormal
structural brain dynamics underlying disease transition or non-transition. To date, it is
unknown whether these dynamic brain changes can be predicted at the single-subject level
prior to disease transition using MRI-based machine-learning techniques.
Methods: First, deformation-based morphometry and partial-least-squares (PLS) was used to
investigate patterns of volumetric changes over time in 25 ARMS individuals versus 28 healthy
controls (HC) (1) irrespective of the clinical outcome and (2) according to illness transition or
non-transition. Then, the baseline MRI data were employed to predict the expression of these
volumetric changes at the individual level using support-vector regression (SVR).
Results: PLS revealed a pattern of pronounced morphometric changes in ARMS versus HC that
affected predominantly the right prefrontal, as well as the perisylvian, parietal and
periventricular structures (pb0.011), and that was more pronounced in the converters
versus the non-converters (pb0.010). The SVR analysis facilitated a reliable prediction of these
longitudinal brain changes in individual out-of training cases (HC vs ARMS: r=0.83, pb0.001;
HC vs converters vs non-converters: r=0.83, pb0.001) by relying on baseline patterns that
involved ventricular enlargements, as well as prefrontal, perisylvian, limbic, parietal and
subcortical volume reductions.
Conclusions: Abnormal brain changes over time may underlie an elevated vulnerability for
psychosis and may be most pronounced in subsequent converters to psychosis. Pattern
regression techniques may facilitate an accurate prediction of these structural brain dynamics,
potentially allowing for an early recognition of individuals at risk of developing psychosis-
associated neuroanatomical changes over time.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The at-risk mental state for psychosis (ARMS) has been
associated with subtle brain abnormalities (Borgwardt et al.,
2007a,b; Koutsouleris et al., 2009a,b; Lawrie et al., 1999;
Meisenzahl et al., 2008b; Pantelis et al., 2003; Seidman et al.,
2003) qualitatively similar to those found in established
schizophrenia (Gaser et al., 2004; Honea et al., 2005;
Koutsouleris et al., 2008; Meisenzahl et al., 2008a). Recent
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studies suggested that these alterations are neither confined
to single cortical regions nor dispersed across the entire brain,
but rather involve interconnected neural systems spanning
prefrontal, perisylvian, parietal, limbic and cerebellar regions
(Borgwardt et al., 2008; Koutsouleris et al., 2009b; Pantelis
et al., 2003; Sun et al., 2009b). Additionally, investigations of
longitudinal neuroanatomical changes in clinically defined
ARMS individuals (Borgwardt et al., 2008; Pantelis et al.,
2003; Sun et al., 2009b; Takahashi et al., 2009) and genetically
defined high-risk subjects (Job et al., 2005, 2006; Lawrie et al.,
2002) mainly found progressive volume losses within this
“prodromal” pattern that primarily affected individuals with
a subsequent illness transition. These findings have been
interpreted within the concept of a “late neurodevelopmental
disturbance”, evolving on the basis of a pre-existing neuro-
biological predisposition when cortical association areas are
placed under increasing functional demand in late adoles-
cence and early adulthood (Pantelis et al., 2005).

It is, however, unclear whether this process is exclusively
active in those who ultimately develop the disease. Alterna-
tively, the neurobiology of the ARMSmay be characterized by
a gradual progression of structural changes that reaches its
full expression across disease transition, but that can also be
traced to a lesser extent in vulnerable subjects without
subsequent illness (DeLisi, 2008; Koutsouleris et al., 2009b;
Takahashi et al., 2009). Thus, in the context of a possible
neuroimaging-aided early recognition of psychosis (Bray
et al., 2009; Koutsouleris et al., 2009a; Linden and Fallgatter,
2009; Sun et al., 2009c), it has to be evaluated (1) whether
spatiotemporal neuroanatomical patterns underlying the
ARMS can be deconstructed into specific illness-associated
trajectories and trajectories conferring an unspecific vulner-
ability, and (2) whether these trajectories can be predicted at
the individual level prior to disease transition.

The existing data suggest that ARMS-associated structural
abnormalities are subtle and likely to occur within multicol-
linear patterns involving networks of interconnected brain
regions. Therefore, univariate statistics may be limited in
detecting these morphological signatures and in measuring
their expression at the single-subject level for the purpose of
an individualized early recognition, because these methods
degrade these complex patterns into largely overlapping
voxel-by-voxel measurements (Davatzikos, 2004). However,
these limitations may be overcome by a methodological shift
to multivariate analysis methods capable of tracing the high-
dimensional structure of ARMS-associated morphological
profiles at baseline and over time.

Therefore, we used deformation-based morphometry and
partial least squares (PLS) (Gilboa et al., 2005; Kawasaki et al.,
2007; McIntosh et al., 1996; Menzies et al., 2007; Nestor et al.,
2002; Tura et al., 2008) (1) to investigate system-level
covariance patterns of longitudinal structural brain changes
in clinically defined ARMS individuals versus healthy con-
trols, and (2) to examine whether these patterns were
exclusively driven by ARMS individuals subsequently devel-
oping a schizophrenia spectrum disorder or, alternatively,
whether subjects without disease transition expressed
similar brain dynamics, albeit to a lesser degree. We expected
these trajectories (1) to involve patterns of volumetric losses
covering prefrontal, perisylvian, parietal, limbic and cerebel-
lar structures, and (2) to be differentially expressed according

to illness transition or non-transition. Furthermore, we
explored whether the expression of these trajectories could
be predicted at the individual level using only the MRI data
acquired at study inclusion. For this purpose, we employed
support-vector regression (SVR) (Schölkopf and Smola,
2002), a multivariate machine-learning technique, due to its
good generalization properties. We expected the SVR predic-
tions to rest upon a neuroanatomical baseline pattern
covering those brain regions that were subsequently affected
by abnormal morphometric change.

2. Materials and methods

2.1. Participants

A prospective study of 28 healthy volunteers (HC; age at
baseline (SD): 25.1 (3.6), 39% females) and 25 ARMS
individuals (age at baseline (SD): 23.1 (4.7), 28% females)
was conducted using structural MRI scanning and clinical
assessments at baseline and after amean(SD)of 3.7 (1.3) years.
All followed subjects were part of a baseline population of 75
HC and 46 ARMS individuals (Koutsouleris et al., 2009a,b) who
were recruited using previously described operationalized
criteria employed by our and other research groups to study
the neurobiology of the ARMS (Frommann et al., 2008;
Hurlemann et al., 2008; Koutsouleris et al., 2009a,b;Meisenzahl
et al., 2008b;Quednowet al., 2008; Schultze-Lutter et al., 2007).
Briefly, different types of prodromal symptoms, including
cognitive/perceptive basic symptoms taken from the Bonn
Scale for Assessment of Prodromal Symptoms (Kojoh and
Hirasawa, 1990; Klosterkötter et al., 2001), as well as the
subthreshold psychotic symptoms closely corresponding to the
PACE criteria (Yung et al., 2003, 2004), including Attenuated
Psychotic Symptoms (APS) aswell as Brief Limited Intermittent
Psychotic Symptoms (BLIPS) were used to define an ARMS for
psychosis (Table 1).

Study inclusion required either (1) a positive global
functioning & trait marker, or (2) at least one positive
psychopathological state marker fulfilling specific duration
criteria (Table 1). Exclusion criteria (Table 1) were assessed
by obtaining the personal and familial history using a semi-
structured clinical interview as well as the Structured Clinical
Interview for DSM-IV (American Psychiatric Association,
1994). Subjects were excluded from the study if they met
the following criteria, including (1) disease transition as
defined by Yung et al., (1998), (2) a past or present diagnosis
of schizophrenia spectrum and bipolar disorders, as well as
delirium, dementia, amnestic or other cognitive disorders,
mental retardation and psychiatric disorders due to a somatic
factor, following the DSM-IV criteria, (3) alcohol or drug
abuse within three months prior to examination, (4) past or
present inflammatory, traumatic or epileptic diseases of the
central nervous system and (5) any previous treatment with
antipsychotics. All participants provided their written in-
formed consent prior to study inclusion. The study was
approved by the Local Research Ethics Committee of the
Ludwig-Maximilians-University.

Included ARMS individuals were seen weekly in the first
month, monthly in the first year, quarterly in the second year
and thereafter annually to detect a possible transition to
psychosis as defined by Yung et al. (1998). All followed ARMS
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individuals were offered supportive counselling and clinical
management. At follow-up, a complete re-examination was
performed and the ARMS individuals were subgrouped either
into an ARMS non-transition (ARMS-NT) or a transition
(ARMS-T) group, if they met the transition criteria during the
follow-up period and had a confirmed diagnosis of schizo-
phrenia spectrum disorder according to the ICD-10 research
criteria one year after transition. Of the 25 followed ARMS

individuals, 9 developed schizophrenia and 3 schizoaffective
psychosis within a range of 40–777 (median: 84) days. The
diagnostic outcomes in the ARMS-NT group resulted in no
psychiatric diagnosis (n=11) and major depression (n=2).
No ARMS-NT individual met the transition criteria during the
follow-up period. No neuroleptic agents were prescribed
prior to the initial MRI scan. Over the follow-up period, nine
ARMS-T but no ARMS-NT individuals received antipsychotics
(Table 3). Furthermore, neither lithium nor depot neurolep-
tics were prescribed over the follow-up period. The mean
(SD) duration of illness (disease transition to follow-up scan)
was 2.9 (1.7) years in the ARMS-T group.

2.2. MRI data acquisition

Baseline and follow-up MR images were obtained on the
same 1.5T Magnetom Vision scanner (Siemens, Erlangen,
Germany) using a T1-weighted 3D magnetization prepared
gradient-echo (MP-RAGE) sequence (TR, 11.6 ms; TE, 4.9 ms;
field of view, 230 mm;matrix,512×512; 126 contiguous axial
slices of 1.5 mm thickness; voxel size, 0.45×0.45×1.5 mm).
No hardware or software update was performed between
baseline and follow-up scanning. All images were checked for
image artefacts, gross anatomical abnormalities and signs of
clinical pathology by trained neuroradiologists.

2.3. Data preprocessing

2.3.1. Measuring volumetric brain changes over time
Volumetric brain changes between each individual's pair

of serial scans were measured using a deformation-based
morphometry pipeline (DBM) implemented in SPM5 (Well-
come Department of Cognitive Neurology, London, UK),
running under MATLAB 2008a (The MathWorks, Natick,
MA, USA) (suppl. method 1). In summary, the pipeline first
realigned the serial scans, removed non-brain tissue and
minimizedMRI bias field inhomogeneities in each scan. Then,
the high-dimensional warping toolbox (HDW) (Chételat
et al., 2005; Kipps et al., 2005; Whitford et al., 2006) was
used (1) to remove the remaining differential MRI intensity
inhomogeneities between the scans, (2) to compute the
warping of the follow-up scan to the respective baseline scan
and (3) to calculate the Jacobian determinant (abbr. Jacobian)
of these between-timepoint deformations as a measure of
volumetric change. The obtained deformations were applied
to the follow-up volume to minimize its difference to the
baseline volume. Then, the soft mean image (Chételat et al.,
2005) of baseline and warped follow-up volumes was
segmented into GM, WM and CSF partitions using the
VBM5 toolbox (http://dbm.uni-jena.de/software). The rigid-
body realigned GM and WM tissue segments were non-
linearly registered to the stereotactic space of the Montreal
Neurological Institute (MNI) using the Diffeomorphic Ana-
tomical Registration Through Exponentiated Lie Algebra
(Ashburner, 2007, 2009; Bergouignan et al., 2009; Klein
et al., 2009) (DARTEL) toolbox. The obtained DARTEL
deformations were used to warp the native-space, between-
timepoint Jacobians to MNI space. Finally, the warped
Jacobians were split into voxel compression (VC) and
expansion (VE) maps (Scahill et al., 2002; Whitwell et al.,
2004) and smoothed with a 3 mm FWHM Gaussian kernel.

Table 1
Inclusion/exclusion criteria for the ARMS individuals.

Early At-Risk Mental State (Arms-E)
ARMS subjects without APS and/or BLIPS...
(1) ... having one or more of the following basic symptoms appeared first
at least 12 months prior to study inclusion and several times per week
during the last 3 months.

• Thought interferences
• Thought perseveration
• Thought pressure
• Thought blockages
• Disturbances of receptive language, either heard or read
•Decreased ability to discriminate between ideas and perception, fantasy
and true memories

• Unstable ideas of reference (subject-centrism)
• Derealisation
• Visual perception disturbances
• Acoustic perception disturbances
and/or
(2) ... showing a reduction in the Global Assessment of Functioning Score
(DSM IV) of at least 30 points (within the past year) combined with at
least one of the following trait markers:

• First-degree relative with a lifetime-diagnosis of schizophrenia or a
schizophrenia spectrum disorder

• Pre- or perinatal complications

Late At-Risk Mental State (ARMS-L)
ARMS subjects with/without basic symptoms, with/without global
functioning & trait markers ...

(1) ... having at least one of the following Attenuated Positive Symptoms
(APS) within the last three months, appearing several times per week
for a period of at least one week:

• Ideas of reference,
• Odd beliefs or magical thinking,
• Unusual perceptual experiences,
• Odd thinking and speech,
• Suspiciousness or paranoid ideation
and/or
(2) ... having at least one of the following Brief Limited Intermittent
Psychotic Symptoms (BLIPS), defined as the appearance of one of the
following psychotic symptoms for less than one week (interval
between episodes at least one week), resolving spontaneously:

• Hallucinations,
• Delusions,
• Formal thought disorder,
• Gross disorganised or catatonic behaviour

Exclusion criteria
• Transition to psychosis as defined by Yung et al., (1998)
• Meeting the DSM-IV criteria for a past or present diagnosis of
schizophrenia spectrum and bipolar disorders, as well as delirium,
dementia, amnestic or other cognitive disorders, mental retardation
and psychiatric disorders due to a somatic factor or related to
psychotropic substances,

• Meeting the DSM-IV criteria for alcohol or drug abuse within three
months prior to examination,

• Any past or present inflammatory, traumatic or epileptic diseases of the
central nervous system
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Nonsignificant between-group differences regarding age,
gender and education were accounted for by adjusting the
VC and VE maps for these effects using partial correlations.

2.3.2. Cross-sectional preprocessing of the baseline MRI data
For the SVR analysis, the baseline MRI data entered a

separate processing pipeline in order to exclude any influence
of the follow-up on the baseline data. First, the MRI scans
were segmented using the VBM5 toolbox. Then, the GM and
WM tissue segments were normalized to MNI space using
DARTEL. Finally, the obtained deformations fields were
written out as cross-sectional Jacobians indicating the
volumetric compressions and expansions necessary to regis-
ter each subject's tissue maps to the DARTEL baseline
template (suppl. method 2). We did not smooth the cross-
sectional Jacobians due to their intrinsic smoothness (6.3, 7.1,
6.4 mm in the x, y and z axes).

2.4. Multivariate analysis of longitudinal brain changes

We used PLS (Fujiwara et al., 2008; Garthwaite, 1994;
Giessing et al., 2007; McIntosh et al., 1996; McIntosh et al.,
1999; Menzies et al., 2007; Wold, 1966) because it imple-
ments a multivariate, data-driven approach to study mor-
phometric changes across the entire brain with higher
sensitivity than the mass-univariate tests operating on a
voxel-by-voxel basis. Previous studies of ARMS individuals
and patients with established psychosis (Borgwardt et al.,
2007a,b, 2008; Honea et al., 2005; Koutsouleris et al., 2009a;
Koutsouleris et al., 2009b; Meisenzahl et al., 2008a,b; Pantelis
et al., 2003) reported complex patterns of distributed
abnormalities suggesting that the underlying pathophysio-
logical process involves networks of inter-related brain
regions rather than single circumscribed structures. This
disease-related connectivity causes the morphometric effects
to be inherently multicollinear, thus violating the assumption
of statistical independence among measures underlying
univariate statistics (Allen, 1997). In contrast, PLS is specif-
ically designed to deal withmulticollinearity both in the brain
as well as in the exogenous data, because it breaks down
high-dimensional, inter-correlated variables into a PLS model
consisting of a small set of uncorrelated latent variables (LV),
which maximize the covariance within and between the
experimental effects and their predictors (McIntosh et al.,

Table 2
Statistical analysis of sociodemographic and clinical parameters.

Variable HC ARMS T /χ2 P ARMS-NT ARMS-T F /T /χ2 P

Sociodemographic variables
N 28 25 13 12
Age at scan (SD) [years] 25.1 (3.6) 23.2 (4.7) 1.74 n.s.♯ 24.1 (5.8) 22.2 (3.1) 2.19 n.s.♮
Gender (M/F) [%] 60.7 / 39.3 72 / 28 0.75 n.s.† 61.5 / 38.5 83.3 / 16.7 2.04 n.s.†
Handedness (R/L/A) [%] 96.4 / 3.6 / 0 92 / 4.0 / 4.0 1.33 n.s.† 84.6 / 7.7 / 7.7 100 / 0 / 0 3.99 n.s.†
Educational years (SD) 12.5 (1.1) 11.9 (1.3) 1.90 n.s.♯ 11.9 (1.3) 11.9 (1.2) 1.82 n.s.♮
Between-scan interval (SD) [years] 3.7 (1.4) 3.7 (1.1) 0.01 n.s♯ 3.9 (0.9) 3.6 (1.3) 0.21 n.s.♮
Premorbid IQ (SD) – 108.5 (14.1) – – 113.9 (14.3) 102.4 (14.4) 1.74 n.s.♯
Subjects with 1∘ relatives having schizophrenic psychoses [%] – 24.0 – – 15.4 33.3 1.10 n.s.†
Subjects with 1∘ relatives having affective psychoses [%] – 16.0 – – 15.4 16.7 0.01 n.s.†

Global functioning and psychopathology at baseline
GAF score (SD) – 57.9 (9.9) – – 59.8 (7.8) 52.8 (14.4) 1.24 n.s.♯
PANSS total score (SD) – 50.9 (16.7) – – 45.3 (8.9) 61.3 (23.06) −2.09 n.s.♯
PANSS positive score (SD) – 10.7 (3.2) – – 9.6 (2.3) 12.8 (3.7) −2.31 .035♯
PANSS negative score (SD) – 13.1 (7.7) – – 10.3 (4.8) 18.2 (9.7) −2.29 .038♯
PANSS general score (SD) – 27.2 (7.9) – – 25.5 (4.9) 30.3 (11.7) −0.98 n.s♯

Abbreviations: M male, F female, R right, L left, A ambidextruous, 1∘ 1st degree relatives.
Statistical tests: †Fisher's exact test, ♯ Student t test, ♮ One-way analysis of variance with 3 groups (HC, ARMS-NT, ARMS-T).

Table 3
Clinical and medication data of ARMS-T

Disease transitions [No. (% of all ARMS individuals)] 12 (48)
Time to disease transition (SD) [years] 0.60 (0.71)
Illness duration (SD) [years] 2.91 (1.71)

Diagnoses: subjects [No. (%)]
Schizoprenia 9 (75)
Schizoaffective psychosis 3 (25)

Medication over the between-scan interval
No. (%) of treated ARMS-T individuals 9 (75)

ARMS-T individuals [No. (%)] ...
Without neuroleptic agents 3 (25)
With 1 neuroleptic agent 2 (17)
With 2 neuroleptic agents 2 (17)
With 3 neuroleptic agents 2 (17)
With N3 neuroleptic agents 3 (25)

ARMS-T individuals [No. (%)] with prescriptions of ...
Amisulpride 6 (67)
Risperidone 4 (44)
Aripiprazole 4 (44)
Quetiapine 3 (33)
Olanzapine 3 (33)
Ziprasidone 2 (22)
Quetiapine 1 (11)

Medication at the follow-up MRI scan
No. (%) of treated ARMS-T individuals 8 (67)

ARMS-T individuals [No. (%)] ...
Without neuroleptic agents 4 (33)
With 1 neuroleptic agents 5 (42)
With 2 neuroleptic agents 1 (8)
With 3 neuroleptic agents 2 (17)
With N3 neuroleptic agents 0 (0)

ARMS-T individuals [No. (%)] with prescriptions of ...
Quetiapine 3 (38)
Risperidone 2 (25)
Amisulpride 2 (25)
Aripiprazole 2 (25)
Ziprasidone 1 (13)
Olanzapine 1 (13)
Clozapine 1 (13)
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1996). These latent variables are orthogonal and sorted
according to their singular values dLV, which provide a
measure for the strength of covariance between the data
blocks. The covariances of each LV pair are described by two
singular vectors, termed X and Y saliences. In the case of
longitudinal volumetric imaging data, the Y saliences consti-
tute a singular image of the longitudinal volumetric effects
covaryingwith the experimental design, while the X saliences
describe linear combinations of design contrast weights that
covary with the singular image and thus represent common
or differential brain volume changes across groups. Further-
more, the expression of the singular image in each study
participant is characterized by a global brainscore, the
summed product of the singular image and the respective
map of volumetric change.

The significance of the PLS model is not evaluated at the
voxel-level, as e.g. in the mass-univariate statistics, but
instead is assessed at the whole-brain level using a non-
parametric permutation test (McIntosh and Lobaugh, 2004)
that randomly reassigns the observations to the experimental
predictors and recomputes the dLV of the permuted models.
Therefore, no correction for multiple comparisons is needed
(McIntosh and Lobaugh, 2004). We performed 5000 permu-
tations to estimate the permutation distribution of dLV and
rejected the null hypothesis that the observed values of dLV
were obtained by chance at α=0.05. Furthermore, the
stability of the covariance pattern elements was determined
by estimating the standard errors of the saliences on the LV
pairs using 1000 bootstrap samples created by resampling
with replacement (Efron and Tibshirani, 1986; McIntosh and
Lobaugh, 2004). The minimum amount of different subjects
selected by the resampling procedure was set to 50% to
exclude low variance samples. Singular image voxels with a
ratio of salience to standard error N2, corresponding to 95%
confidence limits, were considered stable as these elements
showed little variation of the experimental effects against the
varying composition of the bootstrap samples (Sampson
et al., 1989). It is of note that bootstrap resampling was
employed to determine the stability, not the voxel-level
significance of the experimental effects. Stable pattern
elements were mapped to anatomical regions using Auto-
mated Anatomical Labeling (Tzourio-Mazoyer et al., 2002)
and their percentage volume change was quantified using the
unadjusted VC/VE maps (suppl. Fig. 3).

Our first analysis investigated common and differential
patterns of volumetric change in 28 HC vs 25 ARMS subjects.
A second analysis in 28 HC vs 13 ARMS-NT vs 12 ARMS-T
subjects was conducted to explore whether the detected
patterns were driven by disease transition or non-transition.
Therefore, two covariance matrices were constructed from a
block of dummy regressors indicating the conditions “com-
pression” and “expansion” as well as the group membership,
and from a block containing the stacked VC and VE maps of
all participants. Stability of between-group effects was
calculated using the 95% bootstrapping confidence intervals
of the X saliences on the compression and expansion
conditions. Analyses were performed using PLSgui (http://
www.rotman-baycrest.on.ca/pls/). Our study participants'
individual brainscores on the ARMS or disease-associated
patterns of longitudinal volumetric change were defined as
the target variable for the subsequent prediction analysis.

2.5. Individualized prediction of structural brain changes

Support-vector regression (SVR) was used to predict the
expression of ARMS- or transition-associated brain changes at
the individual level from the respective baseline MRI scans.
SVR learning and validation were wrapped into a repeated
double cross-validation (rdCV) framework (Filzmoser et al.,
2009) that allowed (1) constructing ensembles of predictors
and optimize their parameters in order to improve prediction
stability, and (2) obtaining an unbiased estimate of the
generalization capacity using validation data that were
strictly separated from the training data at all steps of the
analysis.

2.5.1. Repeated double cross-validation and ensemble learning
A predictor's generalization ability is typically assessed

using k-fold cross-validation (CV), where the data is split into
k folds and each fold iteratively serves once to estimate the
predictor's performance obtained from all but this partition.
Since in many real-world applications there exists no prior
knowledge about the optimalmodel parameters, CV is used to
select those parameters that achieve the best performance on
the validation data. However, this strategy violates the
principle of separating the training from the testing data
and thus, results in model overfitting and an overly optimistic
estimation of the predictor's generalization capacity (Varma
and Simon, 2006). Therefore, we employed nested cross-
validation (Stone, 1974) by splitting the data into training and
validation sets on an outer (CV2) and an inner CV (CV1) loop
based on a stratified 10-fold CV scheme (suppl. method 3). All
steps of SVR training, including feature selection and
parameter optimization were performed on the CV1 training
and validation partitions, while the generalization error was
exclusively estimated from the CV2 test samples.

Furthermore, we extended nested CV to repeated double
CV (Filzmoser et al., 2009) by randomly permuting the study
participants 10 times within their groups and repeating the
CV cycle for each of these permutations both at the inner and
outer CV loops. The rationale for repeated CV on the inner
(CV1) loop was to generate robust ensemble SVR models by
introducing sample variance into the training process.
Through repeated CV on the outer loop (CV2), we obtained
a reliable estimate of the predictors' generalization perfor-
mance. This performance was defined in analogy to Breiman's
out-of-bag technique (Breiman and Spector, 1990) as the
joint out-of-training prediction (OOT) of the ensemble of
predictors, for which a given subject had not participated in
the training process (suppl. method 3).

2.5.2. Feature extraction and dimensionality reduction
MRI-based pattern regression algorithms are faced with a

very large amount of irrelevant or redundant voxels for the
prediction problem at hand. The dilemma of picking the most
relevant voxels is further exacerbated by the problem of
multivariate prediction where on the one hand individual
highly predictive voxels can be conjointly redundant and on
the other hand weakly relevant voxels can yield high
predictive power when combined into feature sets (Liu
et al., 2005). This “curse of dimensionality” (Bellman, 1961)
decreases the signal-to-noise ratio and hence degrades the
performance of predictive algorithms to detect relevant
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structure in the limited training samples available to
neuroimaging studies of the ARMS. Therefore, we implemen-
ted a multivariate feature selection strategy to capture the
most informative voxel patterns in the training data and to
construct optimal features sets for SVR from these patterns.
We extended our previous dimensionality reduction method
(Koutsouleris et al., 2009a) by including (1) a non-linear
multivariate, nearest-neighbor-based filter (RGS algorithm,
(Navot, 2006 ), suppl. method 4) to identify the most relevant
voxel sets, (2) principal component analysis (PCA) to further
reduce the dimensionality of these voxel sets, and (3) the
construction of compact PCA feature sets to Maximize feature
Relevance and Minimize Redundancy (MRMR) (Peng et al.,
2007). Finally, these compact PCA feature sets, constructed
from each CV1 training sample, entered the SVR analysis.

2.5.3. ν-Support-vector regression
SVMs are multivariate machine-learning algorithms

(Vapnik, 1999; Burges, 1998) increasingly applied to
the MRI-based classification of neuropsychiatric patient
populations due to their good generalisation properties
(Davatzikos et al., 2005, 2008; Fan et al., 2008a,b; Klöppel
et al., 2008; Koutsouleris et al., 2009a; Mourao-Miranda
et al., 2005). Beside their application in the context of
classification, SVMs have been generalized to the regression
estimation of real-valued output functions (Schölkopf and
Smola, 2002). The SVR algorithm finds a linear function f ðxÞ
within a linear or non-linear kernel space that provides the
optimum fit between the training points and their contin-
uous labels. In analogy to the soft-margin support-vector
classification, which allows misclassifications in case of
overlapping class distributions, the estimated regression
line is surrounded by an ε-insensitive tube with the ε
parameter controlling the precision of regression estimation
and thus serving as regularization constraint to avoid model
overfitting. However, as the optimal ε is typically unknown
beforehand, we used the ν-SVR algorithm (Schölkopf et al.,
2000), which automatically determines the optimal ε
through the sparsity parameter ν. The prediction perfor-
mance of the trained SVR models was measured both at the
CV1 and CV2 levels using the Normalized Root of Mean
Squared Deviation (NRMSD, suppl. method 5).

3. Results

3.1. Sociodemographic and clinical data

Age at baseline, gender, handedness, educational years
and between-scan interval did not significantly differ be-
tween HC and ARMS, as well as HC, ARMS-NT and ARMS-T

(Table 2). Furthermore, ARMS-T did not differ significantly
from the ARMS-NT regarding premorbid verbal IQ (as
measured by the Mehrfach–Wortschatz-Test (MWT) (Lehrl,
2005), an established measure in German-speaking popula-
tions) and genetic risk as defined by the prevalence of
affective and schizophrenic psychoses in the first degree
relatives. At study inclusion, there was an overall trend to a
more severe psychopathology in the converters vs the non-
converters, which was significant for the PANSS positive and
negative symptom scale (Table 2).

3.2. PLS between-group analyses of longitudinal volumetric
changes

3.2.1. HC versus ARMS
The first (LV1) of the 4 LV pairs generated by PLS was

significant (Pb0.011) and explained 98.9% of the covariance
between the design matrix and the longitudinal volumetric
data. When interpreting LV1, it is important to note thatmore
negative values in the VC maps measure increased compres-
sion, whereas more positive values in the VE maps quantify
increased expansion. Thus, oppositemean effects between the
compression (red) and expansion (blue) conditions in Fig. 1A,
left, indicate that the underlying covariance pattern of LV1
maps to brain regions affected by both volumetric compres-
sion and expansion. In this context, the sign of the X and Y
saliences is negligible as it is an arbitrary result of the SVD
rotation when the mean centered covariance matrix is
decomposed into the LV pairs. Therefore, the opposite signs
of the brain scores on each volumetric condition indicate a
between-group difference regarding the expression of longitu-
dinal volumetric change, with the ARMS group showingmore
pronounced effects than the HC group (suppl. Fig. 3). This
difference was stable by the non-overlap of the 95% boot-
strapping confidence intervals for each volumetric condition.

The singular image of LV1 (Fig. 1B, left) mapped primarily
to anatomical regions where the tissue compression was
paralleled by an expansion of the adjacent subarachnoidal or
ventricular space. The covariance pattern was distributed
across (1) right-hemispheric structures, spanning the fronto-
polar and dorsolateral areas and covering the entire perisyl-
vian region including the ventrolateral prefrontal and insular
cortex, the precentral, supramarginal and superior temporal
gyri, (2) themedial prefrontal and lateral orbitofrontal cortex,
bilaterally, extending to the cingulate and medial parietal
structures, to the caudate nucleus and the posterior part of
the corpus callosum, (3) the medial and lateral occipital
cortex, and (4) the cerebellum and vermis (Fig. 1B, left and
suppl. Fig. 3). Volumetric quantification (suppl. Fig. 3)
revealed that the structures most involved were the right

Fig. 1. A: Multivariate PLS analysis of volumetric compression and expansion in 28 HC versus 25 ARMS (left side) and 28 HC versus 13 ARMS-NT versus 12 ARMS-T
(right side) after removing the effects of age, gender, educational level and between-scan interval from the data using partial correlations. A: Scatter plots show the
study participants' brain scores on the compression (red) and expansion (blue) conditions in the first latent variable (LV1) obtained in both PLS analyses. For each
condition and group, the mean is represented by a solid line and the 95% bootstrapping confidence interval (CI) by a dotted line. Non-overlapping CIs in the
respective condition (red/blue) reveal significant between-group differences regarding volumetric changes over time at α=0.05. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.) B: In each PLS analysis, a bootstrap ratio (salience/standard error)
threshold of ±2, corresponding to confidence limits of 95%, was defined in order to extract stable voxel elements from the singular image of LV1. These
suprathreshold voxels represented reliable between-group differences of volumeric changes over time. For visualization purposes the suprathreshold voxel
volumes were smoothed with an 8 mm FWHMGaussian kernel to reduce the pattern complexity and were overlaid on the single subject template of the Montreal
Neurological Institute.
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lateral prefrontal, perisylvian, cingulate, occipital and cere-
bellar cortices, bilaterally.

3.2.2. HC versus ARMS-NT versus ARMS-T
The first of six LV pairs was significant (Pb0.010),

explaining 67.8% covariance of the volumetric data with the
experimental predictors. The interpretation and neuroana-
tomical mapping of LV1 is similar to the first analysis (Fig. 1A,
right). The ARMS-T group had the highest brainscores on a
pattern of both longitudinal compression and expansion,
while ARMS-NT loaded on this pattern at an intermediate level
between HC and ARMS-T. The mean differences between the
HC, ARMS-NT and ARMS-T samples were reliable as shown by
the non-overlap of the 95% bootstrapping confidence inter-
vals (Fig. 1A, right).

The distribution of the reliable pattern elements was
similar to the singular image of the first analysis. The right
prefrontal and perisylvian regions were less affected, whereas
the middle and posterior part of the cingulate cortex, corpus
callosum with the adjacent ventricular space and medial
parietal cortex were more involved than in the first PLS
analysis (Fig. 1B, right and suppl. Fig. 3).

3.3. SVR prediction of longitudinal volumetric changes

3.3.1. HC versus ARMS
Using the baseline MRI data, the first SVR analysis (Fig. 2A,

left) achieved a significant out-of-training prediction of our
study participants' brainscores on the singular image of LV1
(r=0.83,T=10.8;Pb0.001). As described above, the singular
image of LV1 described a differential pattern of pronounced
volumetric change in 25 ARMS individuals versus 28 HC. The
out-of-training error of the joint SVR ensemble prediction
was NRMSDOOT=25.5%.

The core neuroanatomical pattern underlying the predic-
tion of ARMS-associated morphometric changes was de-
scribed in terms of the pattern elements' selection frequency
across the CV1 partitions (Fig. 2B, left) and their SV-
associated loadings on the principal components obtained
during feature extraction (suppl. method 6, suppl. Fig. 4). The
predictive baseline pattern involved bilateral ventricular
enlargements and distributed GM volume reductions, includ-
ing (1) the medial temporal lobes (hippocampus, amygdala,
and parahippocampus), (2) the orbitofrontal, medial pre-
frontal and anterior cingulate cortices with extensions to the
dorsomedial prefrontal cortices (DMPFC) and the supple-
mentary motor areas (SMA), (3) the peri- and intralsylvian
regions (superior temporal, supramarginal, inferior frontal
gyrus, Rolandic opercula, and insulae), (4) primarily the right
dorsolateral prefrontal (DLPFC), temporal and occipitotem-

poral cortices and (5) the subcortical structures (cerebellum,
pons, putamen, and thalamus).

3.3.2. HC versus ARMS-NT versus ARMS-T.
SVR achieved an out-of-training prediction of the individ-

ual brain scores on the singular image obtained in our second
PLS analysis with an NRMSDOOT of 25.6% (r=0.83,T=10.5;
Pb0.001, Fig. 2A, right). The predictive neuroanatomical
pattern (Fig. 2B, right) involved enlargements of the
ventricular system as well as predominantly GM volume
reductions in (1) the bilateral posterior temporal, occipito-
temporal and occipital cortices, (2) the medial parietal and
occipital regions, (3) the DLPFC, premotor cortex and SMA,
(4) the inferior temporal gyri and medial temporal lobes, (5)
subcortical structures (cerebellum, pons, putamen and
thalamus).

4. Discussion

4.1. Structural brain dynamics in the ARMS for psychosis

A significant pattern of longitudinal morphometric
changes covering predominantly the right prefrontal and
perisylvian as well as the midline, ventricular and periven-
tricular structures was observed in ARMS vs HC irrespective
of the ARMS individuals' clinical outcome. This finding is
consistent with previous clinical studies, reporting patterns of
cross-sectional GM volume reductions within the prefrontal,
temporal and medial parietal regions of clinical ARMS
cohorts (Borgwardt et al., 2007b; Koutsouleris et al., 2009b;
Meisenzahl et al., 2008b; Witthaus et al., 2009). Moreover,
our results are in keepingwith the cross-sectional study of Job
et al., (2003) which reported (1) GM reductions in the
cingulate cortex of genetically defined high-risk (HR)
individuals vs HC and (2) more extended reductions within
prefronto-temporo-limbic brain regions of first episode (FE)
patients vs HR. Similarly, Witthaus et al., (2009) observed GM
volume reductions within the cingulate cortex and the right
perisylvian region of clinical ARMS vs HC subjects as well as
further andmore extended cingulate, perisylvian, orbitofrontal
and limbic abnormalities in FE vs ARMS. These cross-sectional
data point to an active neurobiological process that (1) affects
higher-order cortical association areas in a state of ultra-high
risk, and (2) causes further accumulatingprefrontal, perisylvian
and limbic alterations during the transition from the prodromal
phase to the FE of psychosis (Pantelis et al., 2005).

This hypothesis is further supported by our second PLS
analysis, which revealed more pronounced morphometric
changes over time in ARMS-T vs ARMS-NT subjects within a
neuroanatomical pattern that largely overlapped with the
volumetric changes found in our first analysis. This finding

Fig. 2. A: SVR prediction analysis of morphometric change over time in HC (blue circles) vs ARMS (red circles) individuals (left panel) as well as in 28 HC (blue
circles) vs 13 ARMS-NT (red circles) vs 12 ARMS-T (green circles) individuals (right panel). Using the baseline MRI data of each study participant, SVR predicted
each individual's brain score on the ARMS-associated longitudinal volumetric changes obtained from the PLS analysis of 28 HC versus 25 ARMS (Fig. 1A and 1B, left
panels) and 28 HC versus 13 ARMS-NT versus 12 ARMS-T (Fig. 1A and 1B, right panels). The out-of-training SVR ensemble prediction was plotted as the function of
the respective brain scores. Error bars indicate the standard deviation of prediction for each individual subject. B: Voxel selection frequencies within the core
neuroanatomical patterns underlying the SVR prediction of morphometric change were shown for the analysis of 28 HC vs 25 ARMS (left) and 28 HC vs 13 ARMS-
NT vs 12 ARMS-T (right). The images indicate for every voxel the frequency of being selected as predictive pattern element across all CV1 partitions (see
visualization strategy described in suppl. methods 7). For visualization purposes a frequency threshold was set to 0.5 and the resulting suprathreshold voxel
volumes were smoothed with an 8 mm FWHM Gaussian kernel to reduce the pattern complexity. These smoothed maps were overlaid on the MNI single subject
template.
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agrees with previous studies reporting progressive volume
reductions in the orbitofrontal, medial prefrontal, cingulate,
temporal, precuneal and cerebellar regions of clinically
defined ARMS-T vs ARMS-NT subjects (Borgwardt et al.,
2008; Pantelis et al., 2003; Sun et al., 2009b) and FE patients
vs HC (Farrow et al., 2005; Sun et al., 2009a; Whitford et al.,
2006). Furthermore, our data is partly consistent with
longitudinal MRI studies of high-risk individuals selected for
genetic (Job et al., 2005) and clinical reasons (Takahashi et al.,
2009) that compared converters, non-converters and healthy
controls. These studies showed that abnormal structural brain
changes within temporal (Job et al., 2005; Takahashi et al.,
2009) and cerebellar regions (Job et al., 2005) can also be
traced in a similar, but more subtle form in ARMS subjects
with transient psychotic symptoms who ultimately do not
become ill. Moreover, Job et al., (2005) also reported GM
density losses in their HC group affecting the medial
orbitofrontal cortex, a brain region that has also been
reported to exhibit abnormal volumetric changes over time
in ARMS-T individuals (Borgwardt et al., 2008; Pantelis et al.,
2003). In this regard, recent MRI investigations showed that
more widespread GM loss also occurs during the normal
development of potentially disease-relevant brain regions
in healthy populations (Shaw et al., 2008) and that the
patterns of GM losses observed in ARMS-NT, ARMS-T and FE
cohorts may represent a spatially similar, but exaggerated
form of these maturational processes (Sun et al., 2009a,b).
Taken together, all these studies, including our own, may
point to a gradual deviation from the normal maturational
trajectory of higher-order cortical networks but also
subcortical structures, which characterizes the ARMS for
psychosis and may be most expressed in those individuals
who ultimately develop a full-blown psychotic disorder.
Different candidate mechanisms may be involved in shaping
this abnormal “late-neurodevelopmental” trajectory (Pantelis
et al., 2005) including alterations in synaptic pruning, dendritic
remodelling, axonal myelination and neuronal cell loss (Davis
et al., 2003; Stephan et al., 2006).

4.2. Individualized prediction of brain changes over time

To our knowledge, this is the first study to relate cross-
sectional to longitudinal structural brain alterations in the
ARMS for psychosis for the purpose of an individualized
prediction of vulnerability and disease-related brain trajec-
tories using machine-learning techniques. Based only on the
MRI data acquired at study inclusion when all ARMS
individuals were unmedicated, our SVR method estimated
with significant precision the expression of ARMS- and
disease-associated structural brain dynamics at the single-
subject level in unseen test individuals.

The visualization of anatomical structures used by SVR to
estimate these brain changes revealed morphometric pat-
terns overlapping with previously reported alterations
in genetically and clinically defined at-risk populations
(Borgwardt et al., 2007a; Job et al., 2003; Koutsouleris et al.,
2009b; Lawrie et al., 1999; Meisenzahl et al., 2008b; Pantelis
et al., 2003; Sun et al., 2009b; Takahashi et al., 2009) and
established psychosis (Meisenzahl et al., 2008a; Koutsouleris
et al., 2008; Honea et al., 2005). Moreover, the spatial
distribution of predictive brain regions was in line with the

discriminative neuroanatomical patterns detected in our
previous work, which used support-vector classification for
the purpose of an MRI-based early identification of the ARMS
and prediction of disease transition (Koutsouleris et al.,
2009a). This overlap suggests that patterns of alterations
involving the frontal, temporal and parietal cortices, the basal
ganglia and the cerebellum may not only serve as candidate
diagnostic markers for a clinically defined ARMS and the
transition or non-transition to psychosis, but also as potential
predictors of the neurodevelopmental trajectories underlying
these clinical phenotypes. However, as the observed PLS
brainscores of the ARMS-T and ARMS-NT groups considerably
overlapped at the individual level (Fig. 1A, right), our results
currently do not allow for an individualized diagnosis of
disease transition or non-transition based on the prediction of
the underlying brain trajectories. In this regard, the future
application of support-vector classification to the longitudinal
data of larger samples may better deconstruct the brain
development underlying the ARMS into trajectories associat-
edwith an elevated vulnerability to psychosis and trajectories
linked to an ultimate disease transition. Nevertheless, our
results may suggest that it is possible, based on the baseline
MRI scan of a person at a clinical risk of psychosis, to predict
whether this person will develop a “normal” or rather an
ARMS-related trajectory of structural brain changes. We may
speculate that this predictive biomarker could facilitate an
informed allocation of therapeutic resources to those at
particular risk of developing these risk-associated brain
changes, and thus could aid in averting or at least delaying
the full-blown expression of psychosis. Our findings suggest
that this perspective should be further explored within the
framework of large-scale prospective studies that allow
evaluating the impact of biomarker-based clinical decision-
making in high-risk populations.

As hypothesized, several brain regions shown by PLS to be
involved in the differential longitudinal effects were found to
be predictive of the subsequent morphometric changes.
These structures consisted primarily of the ventricular
system, the basal ganglia and areas distributed across the
prefrontal, cingulate, medial parietal and perisylvian cortices.
However, the core predictive baseline patterns extended to
further brain regions, which were not, or only marginally,
involved in the longitudinal PLS patterns, such as the medial
temporal lobes, the inferior temporal and occipital gyri as
well as the subcortical structures. This partial overlap
between the predictive baseline patterns and the patterns
of subsequent morphometric change points to complex,
possibly non-linear sequences of structural brain changes
underlying the ARMS and the transition to psychosis, with the
magnitude, direction and spatial distribution of morphomet-
ric changes depending on the timepoint within the trajectory
as well as on the level of genetically and environmentally
mediated vulnerability to psychosis (Douaud et al., 2009).
This hypothesis is supported by cross-sectional studies
(Borgwardt et al., 2007b; Phillips et al., 2002) reporting
non-reductions of medial temporal, subcortical and parietal
brain regions in ARMS-T vs ARMS-NT. In this context, further
longitudinal imaging investigations of more than two time
points are needed to elucidate the complex spatiotemporal
brain dynamics underlying the ARMS, the prodromal and
early phases of psychosis.
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4.3. Limitations

Finally, we have to consider several limitations of our
current study. First, a replication of our findings is needed and
should involve larger sample sizes. Given the known
difficulties in recruiting and following ARMS individuals
over a sufficiently long period of time, this could be best
achieved within a multicenter design. Despite these uncer-
tainties, the application of multivariate analysis techniques in
conjunction with non-parametric resampling techniques
provides a robust and unbiased means to assess the
significance of the observed effects against random noise
and to evaluate their stability against a varying sample
composition. Furthermore, although the repeated double
cross-validation design of the SVR analysis provides an
unbiased generalization estimate of the machine learning
algorithm's capacity to predict longitudinal morphometric
change using only the baseline data, future studies have to
examine whether these findings generalize to independent
samples recruited across different MRI scanners.

Moreover, we have to consider that the results of our PLS
analyses may have been driven by medication effects in the
ARMS-T group. In this regard, the influence of antipsychotic
medication on longitudinal structural brain changes of ARMS
individuals and schizophrenic patients has been controver-
sially discussed (see Borgwardt et al., 2009a, 2009b, for
review). Regarding the conflicting literature, we cannot
completely exclude an impact of antipsychotic medication
on our results. It is, however, unlikely that the covariance
patterns of our between-group analyseswere solely driven by
medication effects, because (1) the non-converters, who did
not receive neuroleptic medication during the follow-up
period, also showed a significant expression of these patterns,
(2) the prediction of morphometric changes over time was
based on the baseline MRI data, which was completely
uninfluenced by antipsychotic medication effects, and (3) the
PLS covariance patterns significantly overlapped with the
previously reported cross-sectional baseline differences in
unmedicated ARMS subjects (Koutsouleris et al., 2009a,b;
Meisenzahl et al., 2008b).

Supplementary data to this article can be found online at
doi:10.1016/j.schres.2010.08.032.
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