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Introduction

The human brain is in a state of constant change and adapta-
tion. This may be driven either by normal developmental or
aging processes or by the effects of learning, training, and new
occurrences in daily life. In addition to these aforementioned
changes, more systematic influences such as gender, disease,
and genes affect the brain’s structure. Using magnetic reso-
nance imaging, brain changes and differences can be measured
noninvasively and in vivo, making them particularly interesting
for both basic research and clinical research. The easiest way to
assess brain changes (or group differences) is to measure
whole-brain volume. However, assessing the volume of the
entire brain is rather unspecific. So-called region-of-interest
(ROI) analyses are more sensitive to local changes than are
whole-brain assessments but are also subject to several limita-
tions. For example, if one specific region is measured, other
brain structures are ignored, and possible effects remain unde-
tected elsewhere in the brain. Moreover, ROIs are usually
created based on individual protocols and depend on rater-
specific ‘judgment calls,’ thus requiring a clearly definable and
unambiguous structure. For large parts of the brain, however, it
may be difficult to precisely define (or identify) unambiguous
boundaries. Finally, if an ROI is only partially different, this
will lower the sensitivity to detect any effects in this region.
This is where voxel-based morphometry (VBM) comes into
play, as VBM allows for the examination of brain changes
and/or group differences across the entire brain with a high
regional specificity (i.e., voxel by voxel), without requiring the
a priori definition of particular ROIs (Ashburner & Friston,
2000, 2001, 2007).

VBM: An Overview

VBM is an objective approach that enables a voxel-wise esti-
mation of the local amount of a specific tissue. Most
commonly, VBM is directed at examining gray matter but it
can also be used to examine white matter. In the latter case,
however, the sensitivity is limited, for white matter areas are
characterized by large homogeneous regions with only subtle
changes in intensity. The concept of VBM comprises three basic
preprocessing steps: (1) tissue classification, (2) spatial
normalization, and (3) spatial smoothing, which are followed
by the actual statistical analysis. That is, if we know exactly
what tissue can be found at a specific voxel, we can quantify
and analyze it. This can be achieved by tissue classification.
Furthermore, if we know that a specific voxel is at exactly the
same anatomical location across all subjects (e.g., at the tip of
the Sylvian fissure), we can compare voxel values across sub-
jects. This is achieved by spatial normalization. Each brain,
however, is unique; sulcal or gyral patterns, for example, vary

greatly across subjects (some sulci are even missing in some
brains). Thus, the success of spatial normalization is limited
and depends on the accuracy of the applied registration
method. In addition, parametric tests assume a Gaussian
distribution of the residuals, which is not necessarily true for
normalized tissue segments. Fortunately, these limitations can
be addressed by applying a Gaussian blurring to the normal-
ized tissue segment. This is achieved by convolving with a
Gaussian function, which is commonly referred to as spatial
smoothing. The smoothed normalized tissue segments are
then entered into a statistical model to map changes within
brains over time and/or differences between brains. The
subsequent sections will further discuss these steps in detail;
an overview of the basic workflow is illustrated in Figure 1.

Tissue Classification

Tissue classification is based on intensity values and basically
serves to segment the brain into gray matter, white matter,
and cerebrospinal fluid after removing any nonbrain parts
(Ashburner & Friston, 1997, 2005; Rajapakse, Giedd, & Rapo-
port, 1997). However, intensity values in structural brain
scans are not exclusively attributable to different tissue
types, as an intensity-based tissue classification would
assume. Rather, inhomogeneities of the magnetic field will
lead to inhomogeneities in image intensity as well. This effect
is even more pronounced with high-field scanners, since it is
more difficult to keep the magnetic field homogeneous for
higher field strengths. As shown in Figure 1 (T1-weighted
image), the intensity inhomogeneity looks like a field of
smoothly varying brightness, which results in different inten-
sities for the same tissue at different locations. Thus, image
intensity inhomogeneities need to be corrected before apply-
ing the actual tissue classification. This correction process is
usually referred to as bias correction. The bias-corrected
T1-weighted image can then be classified into any set of tissue
types (usually three different tissue types for the brain plus
one or more background types).

As shown in Figure 2 (left panel), the distributions of
intensities for each tissue class overlap, even after a bias
correction is applied. One reason for this overlap is that at a
common voxel size of 1!1!1 mm3, any given voxel can
contain more than one tissue. This is generally the case at the
border between the brain parenchyma and cerebrospinal fluid,
at boundaries between gray matter and white matter, and in
structures where white matter fibers cross the gray matter.
Thus, even in a bias field-corrected image, signal intensities
for different tissues will vary and result in a considerable
overlap and so-called partial volumes. Partial volumes can be
modeled explicitly in order to more accurately classify the
tissues and calculate local volumes (Tohka, Zijdenbos, &
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Evans, 2004). To guide tissue classification, additional tissue
probability maps can be used to apply prior knowledge of
where in the brain different tissues can be expected
(Ashburner & Friston, 2005). This means that for each tissue,
a map of how probable it is to be represented by a certain voxel
in the image is used to drive and restrict the tissue classification
algorithm. While this may be valuable as long as the tissue
probability maps match the subject’s tissue distribution, it can
lead to misclassifications in all populations that deviate from
these maps (e.g., child data) (Wilke, Holland, Altaye, & Gaser,
2008). Figure 2 (right panel) depicts the results of tissue

classification. Since an algorithm that accounts for partial vol-
umes was used, the given segments encode a local volume
estimate of tissue content for every voxel.

Spatial Normalization

In addition to tissue classification, the individual brains – or
the native gray matter segments (Figure 3(a)) – must be spa-
tially normalized in order to ensure a voxel-wise comparabil-
ity. Spatial normalization can be divided in linear and
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Figure 1 Workflow of a voxel-based morphometry (VBM) analysis. The analysis is based on high-resolution structural brain images. First, the T1-
weighted images are corrected for inhomogeneities and classified into different tissue types, such as gray matter, white matter, and cerebrospinal
fluid. The gray matter segment (i.e., the tissue of interest) is then spatially normalized to match a common template. Subsequently, the normalized gray
matter segment is smoothed with an isotropic Gaussian kernel. Finally, the smoothed normalized gray matter segments are entered into a statistical
model to conduct voxel-wise statistical tests and map significant effects.
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nonlinear components. Linear normalization alters every part
of the image in exactly the same way and includes translation,
rotation, scaling, and shearing for each dimension (Ashburner
& Friston, 1997). Translation and rotation (each in the x-axis,
y-axis, and z-axis, yielding a total of six parameters) change the

position in space but do not alter shape or size of the brain.
This six-parameter transformation (also known as rigid body
transformation) is frequently used to realign images of the
same brain to each other and can be used, for example, to
detect changes over time in the same subject. The addition of
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Figure 2 Tissue classification. Left panel: Whole-brain images can be segmented into background and different tissue classes, such as gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) based on their intensity. Note that these tissue-specific intensity distributions overlap, which can
be due to partial volume effects. Right panel: The GM, WM, and CSF segments (top) were obtained using a partial volume estimation, which allows
for more than one tissue per voxel. The partial volume estimation label (bottom) depicts the voxel values as transitions between tissue contents. GM is
shown in yellow, WM in red, and CSF in blue. Voxels containing both GM and WM are shown in varying shades of orange, depending on the mixture
of both tissues at this location. Voxels containing both GM and CSF are shown in varying shades of green, depending on the mixture of both tissues
at this location. As both voxel size and tissue content per voxel are known, proper estimations of local tissue volumes can be made.
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Figure 3 Spatial normalization. For visualization, two very different examples are depicted. Subject 1 is a 23-year-old male, while subject 2 is a 64-
year-old female. (a) While local gray matter volumes can be measured in native space in both brains, a voxel-wise comparison is not easily possible.
(b) After spatial normalization, both brains have the same size, shape, and overall pattern of major sulci and gyri. The local amount of gray matter can be
directly compared in voxel-wise statistical tests. (c) The Jacobian determinants derived from the deformation fields that were applied for spatial
normalization indicate different patterns of volume change for both subjects. The deformation forces needed to transform each subject’s brain image
to the template and highlight regions that were expanded (blue/cyan) or compressed (red/yellow) to match the respective areas in the template.
Analyzing these deformation fields or the Jacobian determinants constitutes what is known as tensor-based or deformation-based morphometry.
(d) Multiplying these deformation fields (or more precisely, the Jacobian determinants) with the original normalized gray matter segments corrects for
the volume changes that occurred during the spatial normalization and is known as modulation. Voxel-wise statistical testing applied to these
segments will analyze the local gray matter volume as estimated in native space. Note that although both brains are very similar, the second subject’s
smaller and probably slightly atrophic brain shows less local volume (evident as darker shades of orange).
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scaling and shearing (each again in the x-axis, y-axis, and z-axis,
yielding a total of 12 parameters) will alter the size and global
shape of the brain. A 12-parameter transformation (also
known as affine transformation) is frequently used to register
brains to a template space.

While linear transformations can correct for interindividual
differences in brain size, they cannot model local differences in
size and shape as the same transformation is applied to every
voxel. In contrast, nonlinear transformations allow the appli-
cation of different changes in position, size, and shape locally
and thus correct for interindividual differences on a local scale
(Ashburner, 2007; Ashburner & Friston, 1999, 2005). Still, a
perfect match between any two brains is very unlikely because
brains are highly individual in their local anatomy (e.g., some
sulci and gyri cannot be found in all brains). Nevertheless, in
spite of minor remaining interindividual differences within the
normalized gray matter segments (Figure 3(b)), modern nor-
malization techniques result in brains with a reasonable local
comparability (Ashburner, 2007).

All spatial transformations result in a deformation field
(Figure 3(c)) that describes how local structures were adjusted
to match two brains to each other (i.e., indicating if a part of
the brain had to be enlarged or compressed). The exact voxel-
wise volume changes can be easily derived from these
deformation fields as Jacobian determinants. Analyzing these
Jacobian determinants or the deformation fields themselves
constitutes what is known as tensor-based morphometry or
deformation-based morphometry. The Jacobian determinant
may also be used to correct resulting gray matter segments for
volume changes that occurred due to the spatial normaliza-
tion. More specifically, suppose a structure of the brain with a
certain amount of gray matter becomes bigger during normal-
ization. Consequently, this structure will seem to have larger
local gray matter values than are truly present. If the difference
between true gray matter and apparent gray matter can be
quantified – which is exactly what the Jacobian determinants
do – the measured gray matter can simply be corrected
(i.e., basically ‘undoing’ the unwanted effects of the normali-
zation). This way, the amount of original gray matter is pre-
served in the new space and reflected as so-called modulated
gray matter (Figure 3(d)).

Spatial Smoothing

The reason to smooth the images before statistical analysis is
threefold: First of all, parametric tests assume that the residuals
follow a Gaussian distribution. Simple smoothing of the images
satisfies this assumption by the central limit theorem (after
smoothing, the data are more normally distributed) and thus
makes a parametric test a valid choice (Ashburner & Friston,
2000; Nichols & Hayasaka, 2003). Second, as outlined earlier,
the spatial normalization is not perfect and small interindividual
differences remain. Smoothing accounts for these residual small
interindividual differences in local anatomy (Ashburner & Fris-
ton, 2000). Finally, according to the matched filter theorem,
smoothing renders the analysis sensitive to effects that approxi-
mately match the size of the smoothing kernel (Ashburner &
Friston, 2000). As smoothing kernels usually have a full width at

half maximum of 4–16 mm, this means that very small differ-
ences, which are possibly due to noise, are not picked up by the
analysis. Consequently, after smoothing, each voxel represents a
sphere similar to the smoothing kernel or, in other words, a
weighted mean of its own and its neighbors’ values.

Statistical Analysis

The smoothed normalized tissue segments can be analyzed in
statistical models using parametric tests, although non-
parametric tests are also common. Usually, these tests will be
applied in a mass-univariate approach, which means that the
same test is applied for each voxel simultaneously. As in most
other neuroimaging analyses, this entails a severe multiple
comparison problem and an appropriate correction has to be
applied. In neuroimaging, two major levels of correction are
frequently used that are both based on Gaussian random field
theory (Worsley et al., 1996): a correction on a voxel level and
a correction on a cluster level (though a set-level correction is
also possible) (Friston, Holmes, Poline, Price, & Frith, 1996).
Assume the results are to be corrected controlling the family-
wise error (FWE) at p"0.05. At the voxel level, an FWE correc-
tion will assure that only in 1 out of 20 images a finding will
have reached significance by chance. This is a perfectly legiti-
mate way of correcting the results. To apply an FWE correction
at cluster level, an arbitrary cluster-forming threshold must be
applied, say at p"0.001 uncorrected (Friston et al., 1996).
Given the smoothness of the data, smaller clusters are likely
to occur by chance thus constituting false positives. Larger
clusters, however, are less likely to occur and cluster-forming
thresholds will produce clusters that constitute real effects.
Controlling the FWE at the cluster level therefore means that
only in 1 out of 20 images a cluster of this extent will occur by
chance. This correction will consequently result in a spatial
extent threshold expressed as the minimum number of voxels
comprising the significance cluster.

Unfortunately, statistical parametric maps from structural
analyses vary considerably in local smoothness, meaning that
the appropriate extent threshold varies locally as well. In other
words, within the same image, there might be very smooth
regions where large clusters may occur by chance and relatively
rough regions where true effects may manifest as very small
clusters. Applying one single extent threshold for the whole
image is therefore inappropriate (Ashburner & Friston, 2000;
Hayasaka, Phan, Liberzon, Worsley, & Nichols, 2004). A possi-
ble solution is to correct each voxel individually based on the
local smoothness by rendering smoothness isotropic, which
results in locally varying extent thresholds. Another possibility
is to use a correction based on threshold-free cluster enhance-
ment (TFCE) (Smith & Nichols, 2009). This method estimates a
voxel value that represents the accumulative cluster-like local
spatial support at a range of cluster-forming thresholds. TFCE
has a variety of advantages that make it an elegant solution to
correct for multiple comparisons in structural analyses. First of
all, it does not need an arbitrary cluster-forming threshold, mak-
ing it more objective. Second, it combines statistics based on the
local significance as well as the spatial extent of this effect.
However, because the distribution of the TFCE values is not
known, permutation tests must be used to assess thresholds.
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See also: INTRODUCTION TO METHODS AND MODELING:
Diffeomorphic Image Registration; Nonlinear Registration Via
Displacement Fields; Rigid-Body Registration; Tensor-Based
Morphometry; Tissue Classification.
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